-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
PICANN_Example_Script.py
79 lines (56 loc) · 2.14 KB
/
PICANN_Example_Script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from ICNN import *
import torch
from Train import *
from Datasets import *
from Distributions import *
import os
from Loss_Function import *
from Geometry import Rectangle
import matplotlib.pyplot as plt
'''
Use this file to train the forward part of the PICANN Network.
'''
# Specify the GPU to use.
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# PARAMETERS for Network
hidden_layers = 5
npl = 128
epochs = 10000
dim = 2
# Regularization constant
k = 0
# Variable to save model in multiples of this
save_after_e = 100
Period_Boundary_Flag = F
CINN_Flag = True
deformation_flag = False
# Function g
func_g = gauss_md_2
# FILE PATHS
model_path = './Models/4c/'.format(dim)
graph_path = './Graphs/4c/'.format(dim)
model_name = 'model_hl_' + str(hidden_layers) + '_npl_' + str(npl) + '_k_' + str(k) + '/'
os.makedirs(model_path + model_name, exist_ok=True)
os.makedirs(graph_path, exist_ok=True)
# Initial model to start the training from.
init_model_path = './Models/Softplus_11/Initial/{0}d/'.format(dim)
init_model_name = 'model_hl_' + str(hidden_layers) + '_npl_' + str(npl) + '_10000/e_10000.pth'
init_model_path = init_model_path + init_model_name
# Specify the data set that you want to train
# train_data = AnnulusDataset(20000)
# train_data = GaussianDataset(10000, 0.25, 1)
train_data = MultipleGaussianMixtureDataset(4, 10000, [[-0.5, -0.5], [0.5, 0.5], [0.5, -0.5], [-0.5, 0.5]],
[[0.25**2, 0.25**2], [0.25**2, 0.25**2], [0.25**2, 0.25**2],
[0.25**2, 0.25**2]])
# train_data = FunnyDistDataset('./funnydist_samples.txt')
# Define the model and put that on the GPU
model = ICNN(dim, 1, hidden_layers, npl)
model = model.cuda()
# Define the Loss function you want to impose
criterion = IdentityLoss
# Train the network
model = train_network(train_data, model, KLLoss, criterion, epochs, None, func_g, None, k, save_after_e,
model_path + model_name, init_weights_flag=False, initial_path=init_model_path,
periodic_Flag=Period_Boundary_Flag, cinn_flag=CINN_Flag, deformation_flag=deformation_flag)
# For debugging
print("All done")