-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathargs_mini.py
83 lines (70 loc) · 4.22 KB
/
args_mini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import argparse
import torchFewShot
def argument_parser():
parser = argparse.ArgumentParser(description='Train image model with cross entropy loss')
# ************************************************************
# Datasets (general)
# ************************************************************
parser.add_argument('-d', '--dataset', type=str, default='miniImageNet')
parser.add_argument('--load', default=False)
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=84,
help="height of an image (default: 84)")
parser.add_argument('--width', type=int, default=84,
help="width of an image (default: 84)")
# ************************************************************
# Optimization options
# ************************************************************
parser.add_argument('--optim', type=str, default='sgd',
help="optimization algorithm (see optimizers.py)")
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help="initial learning rate")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser.add_argument('--max-epoch', default=95, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--stepsize', default=[60], nargs='+', type=int,
help="stepsize to decay learning rate")
parser.add_argument('--LUT_lr', default=[(60, 0.1), (70, 0.006), (85, 0.0012), (95, 0.00024)],
help="multistep to decay learning rate")
parser.add_argument('--train-batch', default=4, type=int,
help="train batch size")
parser.add_argument('--test-batch', default=4, type=int,
help="test batch size")
# ************************************************************
# Architecture settings
# ************************************************************
parser.add_argument('--num_classes', type=int, default=64)
parser.add_argument('--scale_cls', type=int, default=7)
# ************************************************************
# Miscs
# ************************************************************
parser.add_argument('--save-dir', type=str, default='./result/miniImageNet/CAM/1-shot-seed112/')
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--gpu-devices', default='2', type=str)
# ************************************************************
# FewShot settting
# ************************************************************
parser.add_argument('--nKnovel', type=int, default=5,
help='number of novel categories')
parser.add_argument('--use_similarity', type=int, default=0,
help='using similarity cam')
parser.add_argument('--nExemplars', type=int, default=5,
help='number of training examples per novel category.')
parser.add_argument('--Classic', type=int, default=0,
help='train classic classifer')
parser.add_argument('--train_nTestNovel', type=int, default=6 * 5,
help='number of test examples for all the novel category when training')
parser.add_argument('--train_epoch_size', type=int, default=1200,
help='number of batches per epoch when training')
parser.add_argument('--nTestNovel', type=int, default=15 * 5,
help='number of test examples for all the novel category')
parser.add_argument('--epoch_size', type=int, default=600,
help='number of batches per epoch')
parser.add_argument('--phase', default='test', type=str,
help='use test or val dataset to early stop')
parser.add_argument('--seed', type=int, default=2333)
return parser