-
Notifications
You must be signed in to change notification settings - Fork 88
/
ssdutils.py
318 lines (279 loc) · 12.9 KB
/
ssdutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#-------------------------------------------------------------------------------
# Author: Lukasz Janyst <[email protected]>
# Date: 29.08.2017
#-------------------------------------------------------------------------------
# This file is part of SSD-TensorFlow.
#
# SSD-TensorFlow is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# SSD-TensorFlow is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with SSD-Tensorflow. If not, see <http://www.gnu.org/licenses/>.
#-------------------------------------------------------------------------------
import numpy as np
from utils import Size, Point, Overlap, Score, Box, prop2abs, normalize_box
from collections import namedtuple, defaultdict
from math import sqrt, log, exp
#-------------------------------------------------------------------------------
# Define the flavors of SSD that we're going to use and it's various properties.
# It's done so that we don't have to build the whole network in memory in order
# to pre-process the datasets.
#-------------------------------------------------------------------------------
SSDMap = namedtuple('SSDMap', ['size', 'scale', 'aspect_ratios'])
SSDPreset = namedtuple('SSDPreset', ['name', 'image_size', 'maps',
'extra_scale', 'num_anchors'])
SSD_PRESETS = {
'vgg300': SSDPreset(name = 'vgg300',
image_size = Size(300, 300),
maps = [
SSDMap(Size(38, 38), 0.1, [2, 0.5]),
SSDMap(Size(19, 19), 0.2, [2, 3, 0.5, 1./3.]),
SSDMap(Size(10, 10), 0.375, [2, 3, 0.5, 1./3.]),
SSDMap(Size( 5, 5), 0.55, [2, 3, 0.5, 1./3.]),
SSDMap(Size( 3, 3), 0.725, [2, 0.5]),
SSDMap(Size( 1, 1), 0.9, [2, 0.5])
],
extra_scale = 1.075,
num_anchors = 8732),
'vgg512': SSDPreset(name = 'vgg512',
image_size = Size(512, 512),
maps = [
SSDMap(Size(64, 64), 0.07, [2, 0.5]),
SSDMap(Size(32, 32), 0.15, [2, 3, 0.5, 1./3.]),
SSDMap(Size(16, 16), 0.3, [2, 3, 0.5, 1./3.]),
SSDMap(Size( 8, 8), 0.45, [2, 3, 0.5, 1./3.]),
SSDMap(Size( 4, 4), 0.6, [2, 3, 0.5, 1./3.]),
SSDMap(Size( 2, 2), 0.75, [2, 0.5]),
SSDMap(Size( 1, 1), 0.9, [2, 0.5])
],
extra_scale = 1.05,
num_anchors = 24564)
}
#-------------------------------------------------------------------------------
# Default box parameters both in terms proportional to image dimensions
#-------------------------------------------------------------------------------
Anchor = namedtuple('Anchor', ['center', 'size', 'x', 'y', 'scale', 'map'])
#-------------------------------------------------------------------------------
def get_preset_by_name(pname):
if not pname in SSD_PRESETS:
raise RuntimeError('No such preset: '+pname)
return SSD_PRESETS[pname]
#-------------------------------------------------------------------------------
def get_anchors_for_preset(preset):
"""
Compute the default (anchor) boxes for the given SSD preset
"""
#---------------------------------------------------------------------------
# Compute the width and heights of the anchor boxes for every scale
#---------------------------------------------------------------------------
box_sizes = []
for i in range(len(preset.maps)):
map_params = preset.maps[i]
s = map_params.scale
aspect_ratios = [1] + map_params.aspect_ratios
aspect_ratios = list(map(lambda x: sqrt(x), aspect_ratios))
sizes = []
for ratio in aspect_ratios:
w = s * ratio
h = s / ratio
sizes.append((w, h))
if i < len(preset.maps)-1:
s_prime = sqrt(s*preset.maps[i+1].scale)
else:
s_prime = sqrt(s*preset.extra_scale)
sizes.append((s_prime, s_prime))
box_sizes.append(sizes)
#---------------------------------------------------------------------------
# Compute the actual boxes for every scale and feature map
#---------------------------------------------------------------------------
anchors = []
for k in range(len(preset.maps)):
fk = preset.maps[k].size[0]
s = preset.maps[k].scale
for size in box_sizes[k]:
for j in range(fk):
y = (j+0.5)/float(fk)
for i in range(fk):
x = (i+0.5)/float(fk)
box = Anchor(Point(x, y), Size(size[0], size[1]),
i, j, s, k)
anchors.append(box)
return anchors
#-------------------------------------------------------------------------------
def anchors2array(anchors, img_size):
"""
Computes a numpy array out of absolute anchor params (img_size is needed
as a reference)
"""
arr = np.zeros((len(anchors), 4))
for i in range(len(anchors)):
anchor = anchors[i]
xmin, xmax, ymin, ymax = prop2abs(anchor.center, anchor.size, img_size)
arr[i] = np.array([xmin, xmax, ymin, ymax])
return arr
#-------------------------------------------------------------------------------
def box2array(box, img_size):
xmin, xmax, ymin, ymax = prop2abs(box.center, box.size, img_size)
return np.array([xmin, xmax, ymin, ymax])
#-------------------------------------------------------------------------------
def jaccard_overlap(box_arr, anchors_arr):
areaa = (anchors_arr[:, 1]-anchors_arr[:, 0]+1) * \
(anchors_arr[:, 3]-anchors_arr[:, 2]+1)
areab = (box_arr[1]-box_arr[0]+1) * (box_arr[3]-box_arr[2]+1)
xxmin = np.maximum(box_arr[0], anchors_arr[:, 0])
xxmax = np.minimum(box_arr[1], anchors_arr[:, 1])
yymin = np.maximum(box_arr[2], anchors_arr[:, 2])
yymax = np.minimum(box_arr[3], anchors_arr[:, 3])
w = np.maximum(0, xxmax-xxmin+1)
h = np.maximum(0, yymax-yymin+1)
intersection = w*h
union = areab+areaa-intersection
return intersection/union
#-------------------------------------------------------------------------------
def compute_overlap(box_arr, anchors_arr, threshold):
iou = jaccard_overlap(box_arr, anchors_arr)
overlap = iou > threshold
good_idxs = np.nonzero(overlap)[0]
best_idx = np.argmax(iou)
best = None
good = []
if iou[best_idx] > threshold:
best = Score(best_idx, iou[best_idx])
for idx in good_idxs:
good.append(Score(idx, iou[idx]))
return Overlap(best, good)
#-------------------------------------------------------------------------------
def compute_location(box, anchor):
arr = np.zeros((4))
arr[0] = (box.center.x-anchor.center.x)/anchor.size.w*10
arr[1] = (box.center.y-anchor.center.y)/anchor.size.h*10
arr[2] = log(box.size.w/anchor.size.w)*5
arr[3] = log(box.size.h/anchor.size.h)*5
return arr
#-------------------------------------------------------------------------------
def decode_location(box, anchor):
box[box > 100] = 100 # only happens early training
x = box[0]/10 * anchor.size.w + anchor.center.x
y = box[1]/10 * anchor.size.h + anchor.center.y
w = exp(box[2]/5) * anchor.size.w
h = exp(box[3]/5) * anchor.size.h
return Point(x, y), Size(w, h)
#-------------------------------------------------------------------------------
def decode_boxes(pred, anchors, confidence_threshold = 0.01, lid2name = {},
detections_cap=200):
"""
Decode boxes from the neural net predictions.
Label names are decoded using the lid2name dictionary - the id to name
translation is not done if the corresponding key does not exist.
"""
#---------------------------------------------------------------------------
# Find the detections
#---------------------------------------------------------------------------
num_classes = pred.shape[1]-4
bg_class = num_classes-1
box_class = np.argmax(pred[:, :num_classes-1], axis=1)
confidence = pred[np.arange(len(pred)), box_class]
if detections_cap is not None:
detections = np.argsort(confidence)[::-1][:detections_cap]
else:
detections = np.argsort(confidence)[::-1]
#---------------------------------------------------------------------------
# Decode coordinates of each box with confidence over a threshold
#---------------------------------------------------------------------------
boxes = []
for idx in detections:
confidence = pred[idx, box_class[idx]]
if confidence < confidence_threshold:
break
center, size = decode_location(pred[idx, num_classes:], anchors[idx])
cid = box_class[idx]
cname = None
if cid in lid2name:
cname = lid2name[cid]
det = (confidence, normalize_box(Box(cname, cid, center, size)))
boxes.append(det)
return boxes
#-------------------------------------------------------------------------------
def non_maximum_suppression(boxes, overlap_threshold):
#---------------------------------------------------------------------------
# Convert to absolute coordinates and to a more convenient format
#---------------------------------------------------------------------------
xmin = []
xmax = []
ymin = []
ymax = []
conf = []
img_size = Size(1000, 1000)
for box in boxes:
params = prop2abs(box[1].center, box[1].size, img_size)
xmin.append(params[0])
xmax.append(params[1])
ymin.append(params[2])
ymax.append(params[3])
conf.append(box[0])
xmin = np.array(xmin)
xmax = np.array(xmax)
ymin = np.array(ymin)
ymax = np.array(ymax)
conf = np.array(conf)
#---------------------------------------------------------------------------
# Compute the area of each box and sort the indices by confidence level
# (lowest confidence first first).
#---------------------------------------------------------------------------
area = (xmax-xmin+1) * (ymax-ymin+1)
idxs = np.argsort(conf)
pick = []
#---------------------------------------------------------------------------
# Loop until we still have indices to process
#---------------------------------------------------------------------------
while len(idxs) > 0:
#-----------------------------------------------------------------------
# Grab the last index (ie. the most confident detection), remove it from
# the list of indices to process, and put it on the list of picks
#-----------------------------------------------------------------------
last = idxs.shape[0]-1
i = idxs[last]
idxs = np.delete(idxs, last)
pick.append(i)
suppress = []
#-----------------------------------------------------------------------
# Figure out the intersection with the remaining windows
#-----------------------------------------------------------------------
xxmin = np.maximum(xmin[i], xmin[idxs])
xxmax = np.minimum(xmax[i], xmax[idxs])
yymin = np.maximum(ymin[i], ymin[idxs])
yymax = np.minimum(ymax[i], ymax[idxs])
w = np.maximum(0, xxmax-xxmin+1)
h = np.maximum(0, yymax-yymin+1)
intersection = w*h
#-----------------------------------------------------------------------
# Compute IOU and suppress indices with IOU higher than a threshold
#-----------------------------------------------------------------------
union = area[i]+area[idxs]-intersection
iou = intersection/union
overlap = iou > overlap_threshold
suppress = np.nonzero(overlap)[0]
idxs = np.delete(idxs, suppress)
#---------------------------------------------------------------------------
# Return the selected boxes
#---------------------------------------------------------------------------
selected = []
for i in pick:
selected.append(boxes[i])
return selected
#-------------------------------------------------------------------------------
def suppress_overlaps(boxes):
class_boxes = defaultdict(list)
selected_boxes = []
for box in boxes:
class_boxes[box[1].labelid].append(box)
for k, v in class_boxes.items():
selected_boxes += non_maximum_suppression(v, 0.45)
return selected_boxes