forked from maomran/softmax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdivider.v
329 lines (299 loc) · 7.48 KB
/
divider.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//IEEE Floating Point Divider (Single Precision)
//Copyright (C) Jonathan P Dawson 2013
//2013-12-12
//
module divider(
input_a,
input_b,
input_a_stb,
input_b_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack,
input_b_ack);
input clk;
input rst;
input [31:0] input_a;
input input_a_stb;
output input_a_ack;
input [31:0] input_b;
input input_b_stb;
output input_b_ack;
output reg [31:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
// reg [31:0] output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [3:0] state;
parameter get_a = 4'd0,
get_b = 4'd1,
unpack = 4'd2,
special_cases = 4'd3,
normalise_a = 4'd4,
normalise_b = 4'd5,
divide_0 = 4'd6,
divide_1 = 4'd7,
divide_2 = 4'd8,
divide_3 = 4'd9,
normalise_1 = 4'd10,
normalise_2 = 4'd11,
round = 4'd12,
pack = 4'd13,
put_z = 4'd14;
reg [31:0] a, b, z;
reg [23:0] a_m, b_m, z_m;
reg [9:0] a_e, b_e, z_e;
reg a_s, b_s, z_s;
reg guard, round_bit, sticky;
reg [50:0] quotient, divisor, dividend, remainder;
reg [5:0] count;
always @(posedge clk)
begin
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_input_b_ack <= 0;
s_output_z_stb <= 0;
output_z <= 0;
a <= 0;
b <= 0;
z <= 0;
a_m <= 0;
b_m <= 0;
z_m <= 0;
a_e <= 0;
b_e <= 0;
z_m <= 0;
end
else begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= get_b;
end
end
get_b:
begin
s_input_b_ack <= 1;
if (s_input_b_ack && input_b_stb) begin
b <= input_b;
s_input_b_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m <= a[22 : 0];
b_m <= b[22 : 0];
a_e <= a[30 : 23] - 127;
b_e <= b[30 : 23] - 127;
a_s <= a[31];
b_s <= b[31];
state <= special_cases;
end
special_cases:
begin
//if a is NaN or b is NaN return NaN
if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
//if a is inf and b is inf return NaN
end else if ((a_e == 128) && (b_e == 128)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
//if a is inf return inf
end else if (a_e == 128) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 255;
z[22:0] <= 0;
state <= put_z;
//if b is zero return NaN
if ($signed(b_e == -127) && (b_m == 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
end
//if b is inf return zero
end else if (b_e == 128) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 0;
z[22:0] <= 0;
state <= put_z;
//if a is zero return zero
end else if (($signed(a_e) == -127) && (a_m == 0)) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 0;
z[22:0] <= 0;
state <= put_z;
//if b is zero return NaN
if (($signed(b_e) == -127) && (b_m == 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
end
//if b is zero return inf
end else if (($signed(b_e) == -127) && (b_m == 0)) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 255;
z[22:0] <= 0;
state <= put_z;
end else begin
//Denormalised Number
if ($signed(a_e) == -127) begin
a_e <= -126;
end else begin
a_m[23] <= 1;
end
//Denormalised Number
if ($signed(b_e) == -127) begin
b_e <= -126;
end else begin
b_m[23] <= 1;
end
state <= normalise_a;
end
end
normalise_a:
begin
if (a_m[23]) begin
state <= normalise_b;
end else begin
a_m <= a_m << 1;
a_e <= a_e - 1;
end
end
normalise_b:
begin
if (b_m[23]) begin
state <= divide_0;
end else begin
b_m <= b_m << 1;
b_e <= b_e - 1;
end
end
divide_0:
begin
z_s <= a_s ^ b_s;
z_e <= a_e - b_e;
quotient <= 0;
remainder <= 0;
count <= 0;
dividend <= a_m << 27;
divisor <= b_m;
state <= divide_1;
end
divide_1:
begin
quotient <= quotient << 1;
remainder <= remainder << 1;
remainder[0] <= dividend[50];
dividend <= dividend << 1;
state <= divide_2;
end
divide_2:
begin
if (remainder >= divisor) begin
quotient[0] <= 1;
remainder <= remainder - divisor;
end
if (count == 49) begin
state <= divide_3;
end else begin
count <= count + 1;
state <= divide_1;
end
end
divide_3:
begin
z_m <= quotient[26:3];
guard <= quotient[2];
round_bit <= quotient[1];
sticky <= quotient[0] | (remainder != 0);
state <= normalise_1;
end
normalise_1:
begin
if (z_m[23] == 0 && $signed(z_e) > -126) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= guard;
guard <= round_bit;
round_bit <= 0;
end else begin
state <= normalise_2;
end
end
normalise_2:
begin
if ($signed(z_e) < -126) begin
z_e <= z_e + 1;
z_m <= z_m >> 1;
guard <= z_m[0];
round_bit <= guard;
sticky <= sticky | round_bit;
end else begin
state <= round;
end
end
round:
begin
if (guard && (round_bit | sticky | z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 24'hffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[22 : 0] <= z_m[22:0];
z[30 : 23] <= z_e[7:0] + 127;
z[31] <= z_s;
if ($signed(z_e) == -126 && z_m[23] == 0) begin
z[30 : 23] <= 0;
end
//if overflow occurs, return inf
if ($signed(z_e) > 127) begin
z[22 : 0] <= 0;
z[30 : 23] <= 255;
z[31] <= z_s;
end
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
end
end
assign input_a_ack = s_input_a_ack;
assign input_b_ack = s_input_b_ack;
assign output_z_stb = s_output_z_stb;
// assign output_z = output_z;
endmodule