forked from CV-IP/PointTrack
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_SE.py
239 lines (192 loc) · 7.61 KB
/
train_SE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Author: Zhenbo Xu
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import os, sys
import shutil
import time
from config import *
os.chdir(rootDir)
from matplotlib import pyplot as plt
from tqdm import tqdm
import torch
from config_mots import *
from criterions.mots_seg_loss import *
from datasets import get_dataset
from models import get_model
from utils.utils import AverageMeter, Cluster, Logger, Visualizer
from file_utils import remove_key_word
from random import random
torch.backends.cudnn.benchmark = True
config_name = sys.argv[1]
args = eval(config_name).get_args()
if args['save']:
if not os.path.exists(args['save_dir']):
os.makedirs(args['save_dir'])
if args['display']:
plt.ion()
else:
plt.ioff()
plt.switch_backend("agg")
# set device
device = torch.device("cuda:0" if args['cuda'] else "cpu")
# clustering
cluster = Cluster()
# Visualizer
visualizer = Visualizer(('image', 'pred', 'sigma', 'seed'))
# Logger
logger = Logger(('train', 'val', 'iou'), 'loss')
# train dataloader
train_dataset = get_dataset(
args['train_dataset']['name'], args['train_dataset']['kwargs'])
train_dataset_it = torch.utils.data.DataLoader(
train_dataset, batch_size=args['train_dataset']['batch_size'], shuffle=True, drop_last=True,
num_workers=args['train_dataset']['workers'], pin_memory=True if args['cuda'] else False)
# val dataloader
val_dataset = get_dataset(
args['val_dataset']['name'], args['val_dataset']['kwargs'])
val_dataset_it = torch.utils.data.DataLoader(
val_dataset, batch_size=args['val_dataset']['batch_size'], shuffle=True, drop_last=True,
num_workers=args['train_dataset']['workers'], pin_memory=True if args['cuda'] else False)
# set model
model = get_model(args['model']['name'], args['model']['kwargs'])
model.init_output(args['loss_opts']['n_sigma'])
model = torch.nn.DataParallel(model).to(device)
# set criterion
criterion = eval(args['loss_type'])(**args['loss_opts'])
criterion = torch.nn.DataParallel(criterion).to(device)
# resume
start_epoch = 0
best_iou = 0
best_seed = 10
max_disparity = args['max_disparity']
if 'resume_path' in args.keys() and args['resume_path'] is not None and os.path.exists(args['resume_path']):
print('Resuming model from {}'.format(args['resume_path']))
state = torch.load(args['resume_path'])
if 'start_epoch' in args.keys():
start_epoch = args['start_epoch']
elif 'epoch' in state.keys():
start_epoch = state['epoch'] + 1
else:
start_epoch = 1
# best_iou = state['best_iou']
for kk in state.keys():
if 'state_dict' in kk:
state_dict_key = kk
break
new_state_dict = state[state_dict_key]
if not 'state_dict_keywords' in args.keys():
try:
model.load_state_dict(new_state_dict, strict=True)
except:
print('resume checkpoint with strict False')
model.load_state_dict(new_state_dict, strict=False)
else:
new_state_dict = remove_key_word(state[state_dict_key], args['state_dict_keywords'])
model.load_state_dict(new_state_dict, strict=False)
print('resume checkpoint with strict False')
try:
logger.data = state['logger_data']
except:
pass
# set optimizer
if 'seed_only' in args.keys() and args['seed_only']:
print('finetune SEED only')
optimizer = torch.optim.Adam(model.module.decoders[1].parameters(), lr=args['lr'], weight_decay=1e-4)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=args['lr'], weight_decay=1e-4)
def lambda_(epoch):
return pow((1 - ((epoch) / args['n_epochs'])), 0.9)
if 'milestones' in args.keys():
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args['milestones'], gamma=0.1)
else:
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_, )
def train(epoch):
# define meters
loss_meter = AverageMeter()
loss_seed_meter = AverageMeter()
# put model into training mode
model.train()
if 'fix_bn' in args.keys() and args['fix_bn']:
print('BN Fixed!')
# freeze bn if need
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
for param_group in optimizer.param_groups:
print('learning rate: {}'.format(param_group['lr']))
for i, sample in enumerate(tqdm(train_dataset_it)):
ims = sample['image']
instances = sample['instance'].squeeze(1)
class_labels = sample['label'].squeeze(1)
output = model(ims)
loss, seed_loss = criterion(output, instances, class_labels, **args['loss_w'], show_seed=True)
loss = loss.mean()
seed_loss = seed_loss.mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_meter.update(loss.item())
loss_seed_meter.update(seed_loss.item())
return loss_meter.avg, loss_seed_meter.avg
def val(epoch):
# define meters
loss_meter, iou_meter, loss_seed_meter = AverageMeter(), AverageMeter(), AverageMeter()
# put model into eval mode
model.eval()
with torch.no_grad():
for i, sample in enumerate(tqdm(val_dataset_it)):
ims = sample['image']
instances = sample['instance'].squeeze(1)
class_labels = sample['label'].squeeze(1)
output = model(ims)
loss, seed_loss = criterion(output, instances, class_labels, **args['loss_w'], iou=True,
iou_meter=iou_meter, show_seed=True)
loss = loss.mean()
seed_loss = seed_loss.mean()
loss_meter.update(loss.item())
loss_seed_meter.update(seed_loss.item())
return loss_meter.avg, iou_meter.avg, loss_seed_meter.avg
def save_checkpoint(state, is_best, val_iou, val_seed_loss, is_lowest=False, name='checkpoint.pth'):
print('=> saving checkpoint')
if 'save_name' in args.keys():
file_name = os.path.join(args['save_dir'], args['save_name'])
else:
file_name = os.path.join(args['save_dir'], name)
torch.save(state, file_name)
if is_best:
shutil.copyfile(file_name, os.path.join(
args['save_dir'], 'best_iou_model.pth' + str(val_iou)))
if is_lowest:
shutil.copyfile(file_name, os.path.join(
args['save_dir'], 'best_seed_model.pth' + str(val_seed_loss)))
for epoch in range(start_epoch, args['n_epochs']):
print('Starting epoch {}'.format(epoch))
if epoch > start_epoch:
scheduler.step()
else:
val_loss, val_iou, val_seed_loss = val(epoch)
print('===> val loss: {:.4f}, val iou: {:.4f}, val seed: {:.4f}'.format(val_loss, val_iou, val_seed_loss))
train_loss, seed_loss = train(epoch)
val_loss, val_iou, val_seed_loss = val(epoch)
print('===> train loss: {:.4f}'.format(train_loss))
print('===> seed loss: {:.4f}'.format(seed_loss))
print('===> val loss: {:.4f}, val iou: {:.4f}, val seed: {:.4f}'.format(val_loss, val_iou, val_seed_loss))
logger.add('train', train_loss)
logger.add('val', val_loss)
logger.add('iou', val_iou)
logger.plot(save=args['save'], save_dir=args['save_dir'])
is_best = val_iou > best_iou
best_iou = max(val_iou, best_iou)
is_lowest = val_loss < best_seed
best_seed = min(val_loss, best_seed)
if args['save']:
state = {
'epoch': epoch,
'best_iou': best_iou,
'best_seed': best_seed,
'model_state_dict': model.state_dict(),
'optim_state_dict': optimizer.state_dict(),
'logger_data': logger.data
}
save_checkpoint(state, is_best, val_iou, val_loss, is_lowest=is_lowest)