forked from CV-IP/PointTrack
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_tracking.py
114 lines (93 loc) · 3.62 KB
/
test_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
Author: Zhenbo Xu
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import os, sys
import time
import torchvision
from matplotlib import pyplot as plt
from tqdm import tqdm
from config_mots import *
from datasets import get_dataset
from models import get_model
from utils.mots_util import *
from config import *
import subprocess
# torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
seed = 0
torch.manual_seed(seed)
np.random.seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
config_name = sys.argv[1]
args = eval(config_name).get_args()
max_disparity = args['max_disparity']
if args['display']:
plt.ion()
else:
plt.ioff()
plt.switch_backend("agg")
if args['save']:
if not os.path.exists(args['save_dir']):
os.makedirs(args['save_dir'])
# set device
device = torch.device("cuda:0" if args['cuda'] else "cpu")
# dataloader
dataset = get_dataset(
args['dataset']['name'], args['dataset']['kwargs'])
dataset_it = torch.utils.data.DataLoader(
dataset, batch_size=1, shuffle=False, drop_last=False, num_workers=4, pin_memory=True if args['cuda'] else False)
# load model
model = get_model(args['model']['name'], args['model']['kwargs'])
model = torch.nn.DataParallel(model).to(device)
# load snapshot
if os.path.exists(args['checkpoint_path']):
state = torch.load(args['checkpoint_path'])
model.load_state_dict(state['model_state_dict'], strict=True)
print('Load dict from %s' % args['checkpoint_path'])
else:
assert(False, 'checkpoint_path {} does not exist!'.format(args['checkpoint_path']))
print(args['checkpoint_path'])
model.eval()
def prepare_img(image):
if isinstance(image, Image.Image):
return image
if isinstance(image, torch.Tensor):
image.squeeze_()
image = image.numpy()
if isinstance(image, np.ndarray):
if image.ndim == 3 and image.shape[0] in {1, 3}:
image = image.transpose(1, 2, 0)
return image
dColors = [(128, 0, 0), (170, 110, 40), (128, 128, 0), (0, 128, 128), (0, 0, 128), (230, 25, 75), (245, 130, 48)
, (255, 225, 25), (210, 245, 60), (60, 180, 75), (70, 240, 240), (0, 130, 200), (145, 30, 180), (240, 50, 230)
, (128, 128, 128), (250, 190, 190), (255, 215, 180), (255, 250, 200), (170, 255, 195), (230, 190, 255), (255, 255, 255)]
trackHelper = TrackHelper(args['save_dir'], model.module.margin, alive_car=30, car=args['car'] if 'car' in args.keys() else True,
mask_iou=True)
with torch.no_grad():
for sample in tqdm(dataset_it):
subf, frameCount = sample['name'][0][:-4].split('/')[-2:]
frameCount = int(float(frameCount))
# MOTS forward with tracking
points = sample['points']
if len(points) < 1:
embeds = np.array([])
masks = np.array([])
else:
masks = sample['masks'][0]
xyxys = sample['xyxys']
embeds = model(points, None, xyxys, infer=True)
embeds = embeds.cpu().numpy()
masks = masks.numpy()
# do tracking
trackHelper.tracking(subf, frameCount, embeds, masks)
trackHelper.export_last_video()
if 'run_eval' in args.keys() and args['run_eval']:
# run eval
save_val_dir = args['save_dir'].split('/')[1]
p = subprocess.run([pythonPath, "-u", "eval.py",
os.path.join(rootDir, save_val_dir), kittiRoot + "instances", "val.seqmap"],
stdout=subprocess.PIPE, cwd=rootDir + "datasets/mots_tools/mots_eval")
print(p.stdout.decode("utf-8"))