MobileNetV2FPN
backbone
- Rotated bounding box detections models can now be exported to ONNX and TensorRT using
odtk export model.pth model.plan --rotated-bbox
- The
--rotated-bbox
flag is automatically applied when runningodtk infer
orodtk export
on a model trained with ODTK version 0.2.2 or later.
- Improvements to the rotated IoU calculations.
- The C++ API cannot currently infer rotated bounding box models.
- The DALI dataloader (flag
--with-dali
) now supports image augmentation using:--augment-brightness
: Randomly adjusts brightness of image--augment-contrast
: Randomly adjusts contrast of image--augment-hue
: Randomly adjusts hue of image--augment-saturation
: Randomly adjusts saturation of image
- The code in
box.py
for generating anchors has been improved.
Version 0.2.0 introduces rotated detections.
train arguments
:--rotated-bbox
: Trains a model is predict rotated bounding boxes[x, y, w, h, theta]
instead of axis aligned boxes[x, y, w, h]
.
infer arguments
:--rotated-bbox
: Infer a rotated model.
The project has reverted to the name Object Detection Toolkit (ODTK), to better reflect the multi-network nature of the repo.
retinanet
has been replaced withodtk
. All subcommands remain the same.
- Models trained using the
--rotated-bbox
flag cannot be exported to ONNX or a TensorRT Engine. - PyTorch raises two warnings which can be ignored:
Warning 1: NCCL watchdog
[E ProcessGroupNCCL.cpp:284] NCCL watchdog thread terminated
Warning 2: Save state warning
/opt/conda/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:201: UserWarning: Please also save or load the state of the optimzer when saving or loading the scheduler.
warnings.warn(SAVE_STATE_WARNING, UserWarning)
train
arguments--augment-rotate
: Randomly rotates the training images by 0°, 90°, 180° or 270°.--augment-brightness
: Randomly adjusts brightness of image--augment-contrast
: Randomly adjusts contrast of image--augment-hue
: Randomly adjusts hue of image--augment-saturation
: Randomly adjusts saturation of image--regularization-l2
: Sets the L2 regularization of the optimizer.