-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
169 lines (154 loc) · 6.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import numpy as np
import pandas as pd
import h5py
from torch.utils.data import Dataset
from aa_code_utils import *
def onehot(x):
z = np.zeros((len(x), 20))
for i, c in enumerate(x):
z[i, c] = 1
return z
def make_contact_map(ca_coors, mask=None, cutoff=4):
# print("ca_coors", ca_coors.shape)
print("ca_coors max", np.max(ca_coors), "ca_coors min", np.min(ca_coors))
dist_map = np.linalg.norm(ca_coors[np.newaxis, :, :] - ca_coors[:, np.newaxis, :], axis=2)
cont_map = dist_map < cutoff
if mask is not None:
cont_map[~mask, :] = False
cont_map[:, ~mask] = False
cont_map[~mask, ~mask] = True
print("{0} contacts in the {1}x{1} contact map".format(np.sum(1.0*cont_map)-cont_map.shape[0], cont_map.shape[0]))
return cont_map
def make_a_matrix(idxs, self_loop=True):
mat = (np.repeat(idxs.reshape(-1, 1), idxs.shape[0], 1) - np.repeat(idxs.reshape(1, -1), idxs.shape[0], 0))
mat = 1.0 * (abs(mat) == 1)
if self_loop:
mat = mat + np.eye(len(idxs))
return mat
def make_d_matrix(a_mat):
mat = np.eye(a_mat.shape[0]) * np.sum(a_mat, axis=1) ** (-0.5)
return mat
class GCNDataset(Dataset):
def __init__(self, n, max_buf_size, df_path, seq_len_range=(128, 512), seed=0, h5=None, build_on_the_fly=False,
verbose=False):
self.rn = np.random.RandomState(seed)
self.n = n
self.verbose = verbose
self.df_path = df_path
self.df = None
self.max_buf_size = max_buf_size
self.seq_len_range = seq_len_range
self.build_on_the_fly = build_on_the_fly
if self.df_path:
self.df = pd.read_hdf(self.df_path, "df").query("len >= {} and len <= {}".format(*self.seq_len_range))
if "standard" in self.df:
self.df = self.df.query("standard")
print("Using {} out of {} sequences".format(self.df_path, len(self.df)))
if 0 < self.n <= len(self.df):
self.df = self.df.sample(self.n, random_state=self.rn)
else:
self.n = len(self.df)
self.use_df_data = True
print(self.df["len"].describe())
else:
self.use_df_data = False
if h5 is None:
self.idxs = list()
self.f = list()
self.seq = list()
self.gt_seq = list()
self.gt_idxs = list()
self.h5_filename = None
self.h5_mode = False
else:
self.h5_filename = os.path.join(h5, "gcn_lstm_{}_{}_{}_{}_{}.h5".format(max_buf_size, seq_len_range[0],
seq_len_range[1], n, seed))
self.h5_mode = True
if self.build_on_the_fly:
pass
else:
self.build_all()
if self.h5_mode:
self.h5_handle = h5py.File(self.h5_filename, "r")
def build_one(self, idx):
my_a_mat = None
make_dummy = True
if self.use_df_data:
my_seq_len = self.df["len"].iloc[idx]
my_seq = np.array([a2id(c) for c in self.df["seq"].iloc[idx]])
if "CA_coors" in self.df:
my_a_mat = 1.0 * make_contact_map(self.df["CA_coors"].iloc[idx] * 0.01,
self.df["mask"].iloc[idx])
if self.verbose:
print("contact map created", my_a_mat.shape)
make_dummy = False
else:
my_seq_len = self.rn.randint(self.seq_len_range[0], self.seq_len_range[1])
my_seq = self.rn.randint(0, 20, my_seq_len)
my_seq_idxs = np.arange(my_seq_len)
if self.verbose:
print("my_seq_idxs", my_seq_idxs.shape)
if make_dummy:
my_dummy_idxs = self.rn.permutation(np.arange(self.seq_len_range[1], 2 * self.max_buf_size))[
0:(self.max_buf_size - my_seq_len)]
if self.verbose:
print("my_dummy_idxs", my_dummy_idxs.shape)
my_rand_idxs = self.rn.permutation(self.max_buf_size)
if self.verbose:
print("my_rand_idxs", my_rand_idxs.shape)
my_idxs = np.concatenate((my_seq_idxs, my_dummy_idxs))[my_rand_idxs]
if self.verbose:
print("my_idxs", my_idxs.shape)
my_seq = np.concatenate((my_seq, self.rn.randint(0, 20, self.max_buf_size - my_seq_len)))
my_seq = my_seq[my_rand_idxs]
else:
my_idxs = my_seq_idxs
my_feats = 0.01 * abs(self.rn.randn(len(my_seq), 20))
my_gt_idxs = np.argsort(my_idxs)[0:my_seq_len]
my_gt_seq = my_seq[my_gt_idxs]
for j, s in enumerate(my_seq):
my_feats[j, s] = 1 - np.sum(my_feats[j, :]) + my_feats[j, s]
return my_idxs, my_feats, my_seq, my_gt_seq, my_gt_idxs, my_a_mat
def build_all(self):
if self.h5_mode:
handle = h5py.File(self.h5_filename, "w")
for i in range(self.n):
my_idxs, my_feats, my_seq, my_gt_seq, my_gt_idxs, my_a_mat = self.build_one(i)
if self.h5_mode:
handle.create_dataset("idxs_{}".format(i), my_idxs.shape, data=my_idxs)
handle.create_dataset("f_{}".format(i), my_feats.shape, data=my_feats)
handle.create_dataset("seq_{}".format(i), my_seq.shape, data=my_seq)
handle.create_dataset("gt_seq_{}".format(i), my_gt_seq.shape, data=my_gt_seq)
handle.create_dataset("gt_idxs_{}".format(i), my_gt_idxs.shape, data=my_gt_idxs)
else:
self.idxs.append(my_idxs)
self.f.append(my_feats)
self.seq.append(my_seq)
self.gt_seq.append(my_gt_seq)
self.gt_idxs.append(my_gt_idxs)
if (i+1) % 10000 == 0:
print("processed {} sequences".format(i+1))
if self.h5_mode:
handle.close()
def __len__(self):
return self.n
def __getitem__(self, idx):
a_mat = None
if self.build_on_the_fly:
my_idxs, f, my_seq, my_gt_seq, gt_idxs, a_mat = self.build_one(idx)
elif self.h5_mode:
my_gt_seq = self.h5_handle["gt_seq_{}".format(idx)][()]
my_idxs = self.h5_handle["idxs_{}".format(idx)][()]
f = self.h5_handle["f_{}".format(idx)][()]
gt_idxs = self.h5_handle["gt_idxs_{}".format(idx)][()]
else:
my_gt_seq = self.gt_seq[idx]
my_idxs = self.idxs[idx]
f = self.f[idx]
gt_idxs = self.gt_idxs[idx]
x = onehot(my_gt_seq)
if a_mat is None:
a_mat = make_a_matrix(my_idxs)
d_mat = make_d_matrix(a_mat)
return x, f, a_mat, d_mat, gt_idxs