-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrop.py
68 lines (60 loc) · 2.05 KB
/
crop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import cv2
import os
import torch
import numpy as np
def cutimg(img, num=25,overlap_factor=128):
print(img.shape)
"""a,b,c,d,分别存储A,B1,B2,B3的256*256块"""
factor = int(np.sqrt(num))
x=6
a=[]
a1=[]
b1=[]
c1=[]
d1=[]
e1=[]
b=[]
c=[]
d=[]
e=[]
for i in range(factor):
a1 = []
b1 = []
c1 = []
d1 = []
e1=[]
for ii in range(factor):
img_temp1 = img[i * overlap_factor:(i + 2) * overlap_factor, ii * overlap_factor:(ii + 2) * overlap_factor]
img_temp2 = img[i * overlap_factor:(i + 2) * overlap_factor, (ii+x) * overlap_factor:(ii +x+2) * overlap_factor]
img_temp3 = img[i * overlap_factor:(i + 2) * overlap_factor, (ii+2*x) * overlap_factor:(ii + 2*x+2) * overlap_factor]
img_temp4 = img[i * overlap_factor:(i + 2) * overlap_factor, (ii+3*x) * overlap_factor:(ii + 3*x+2) * overlap_factor]
img_temp5 = img[i * overlap_factor:(i + 2) * overlap_factor, (ii+4*x) * overlap_factor:(ii + 4*x+2) * overlap_factor]
print(i)
print(img_temp1.shape,img_temp2.shape,img_temp3.shape,img_temp4.shape,img_temp5.shape)
a1.append(img_temp1)
b1.append(img_temp2)
c1.append(img_temp3)
d1.append(img_temp4)
e1.append(img_temp5)
# cv2.imshow('0',img)
# cv2.imshow('1',img_temp1)
# cv2.imshow('2', img_temp2)
# cv2.imshow('3', img_temp3)
# cv2.imshow('4', img_temp4)
# cv2.imshow('5', img_temp5)
cv2.waitKey(0)
a.append(a1)
b.append(b1)
c.append(c1)
d.append(d1)
e.append(e1)
return a,b,c,d,e
# img=cv2.imread('./data_test/173.jpg')
# a,b,c,d=cutimg(img,9)
# for i in range(9):
# img=np.hstack((a[i],b[i],c[i],d[i]))
# cv2.imwrite('./save/{}.jpg'.format(i),img)
# img=cv2.imread('./0.jpg')
# a,b,c,d=cutimg(img,25)
# cv2.imshow('1',a[2])
# cv2.waitKey(0)