-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_edges.py
73 lines (57 loc) · 2.31 KB
/
train_edges.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# CC BY-NC-SA 4.0 License
# Copyright 2024 Samsung Israel R&D Center (SIRC), based on:
# https://github.com/TRI-ML/packnet-sfm - Toyota Research Institute
import argparse
import sys
from packnet_code.packnet_sfm.models.model_wrapper import ModelWrapper
from packnet_code.packnet_sfm.models.model_checkpoint import ModelCheckpoint
from packnet_code.packnet_sfm.trainers.common_trainer import CommonTrainer
from packnet_code.packnet_sfm.utils.config import parse_train_file
from packnet_code.packnet_sfm.utils.load import set_debug, filter_args_create
from packnet_code.packnet_sfm.utils.horovod import hvd_init, rank
from packnet_code.packnet_sfm.loggers.wandb_logger import WandbLogger
def parse_args():
"""Parse arguments for training script"""
parser = argparse.ArgumentParser(description='PackNet-SfM training script')
parser.add_argument('file', type=str, help='Input file (.ckpt or .yaml)')
args = parser.parse_args()
# assert args.file.endswith(('.ckpt', '.yaml')), \
# 'You need to provide a .ckpt of .yaml file'
return args
def train(file):
"""
Monocular depth estimation training script.
Parameters
----------
file : str
Filepath, can be either a
**.yaml** for a yacs configuration file or a
**.ckpt** for a pre-trained checkpoint file.
"""
# Initialize horovod
# hvd_init()
# Produce configuration and checkpoint from filename
config, ckpt = parse_train_file(file)
# Set debug if requested
set_debug(config.debug)
# Wandb Logger
logger = None if config.wandb.dry_run or rank() > 0 \
else filter_args_create(WandbLogger, config.wandb)
# model checkpoint
checkpoint = None if config.checkpoint.filepath is '' or rank() > 0 else \
filter_args_create(ModelCheckpoint, config.checkpoint)
# Initialize model wrapper
#print('Before model wrapper')
model_wrapper = ModelWrapper(config, resume=ckpt, logger=logger)
# if config.is_multi_gpu:
# model_wrapper = torch.nn.DataParallel(model_wrapper)
# Create trainer with args.arch parameters
trainer = CommonTrainer(**config.arch, checkpoint=checkpoint)
# Train model
trainer.fit(model_wrapper)
def main(args):
args = parse_args()
train(args.file)
if __name__ == '__main__':
main(sys.argv[1:])
# main(sys.argv[1:])