-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmit_main.py
414 lines (348 loc) · 13.9 KB
/
submit_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import argparse
import sys
import os
import random
import argparse
import numpy as np
import torch
from torchvision import datasets
from torch import nn, optim, autograd
parser = argparse.ArgumentParser(description='ensemble')
parser.add_argument('--id_sp', type=float, default=0.9)
parser.add_argument('--p', type=float, default=0.1)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--n_iters', type=int, default=5001)
parser.add_argument('--n_restarts', type=int, default=5)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--colors', type=int, default=32)
args = parser.parse_args()
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
print("Loading dataset...")
mnist = datasets.MNIST('mnist', train=True, download=True)
mnist_train = (mnist.data[:50000], mnist.targets[:50000])
mnist_val = (mnist.data[50000:], mnist.targets[50000:])
images_train = mnist_train[0]
images_train = images_train.reshape((-1, 28, 28))[:, ::2, ::2]
labels_train = mnist_train[1]
def duplicate_images(images_):
images_ = torch.stack([images_, images_, images_], dim=1)
images_1 = torch.cat([images_, images_, images_], dim=2)
images_2 = torch.cat([images_1, images_1, images_1], dim=3)
images_2[:, :, :14, :14] = 0
images_2[:, :, :14, 14:28] = 0
images_2[:, :, :14, 28:42] = 0
images_2[:, :, 14:28, :14] = 0
# mid leave blank
images_2[:, :, 14:28, 28:42] = 0
images_2[:, :, 28:42, :14] = 0
images_2[:, :, 28:42, 14:28] = 0
images_2[:, :, 28:42, 28:42] = 0
return images_2
dup_images_train = duplicate_images(images_train)
mnist_val = (mnist.data[50000:], mnist.targets[50000:])
images_val = mnist_val[0]
images_val = images_val.reshape((-1, 28, 28))[:, ::2, ::2]
labels_val = mnist_val[1]
dup_images_val = duplicate_images(images_val)
# Generate Meta List
color_names = [
"Red",
"Green",
"Blue",
"Yellow",
"Cyan",
"Magenta",
"Black",
"White",
"Gray",
"Orange"
]
colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Yellow
(0, 255, 255), # Cyan
(255, 0, 255), # Magenta
(0, 0, 0), # Black
(255, 255, 255),# White
(128, 128, 128),# Gray
(255, 165, 0), # Orange
]
def get_loss(preds, labels):
one_hot_labels = F.one_hot(labels, num_classes=10)
loss = ((one_hot_labels - preds)**2).mean()
return loss
#top_left
# blocks
x_list = [(0), (0), (0), (14), (14), (28), (28), (28),]
y_list = [(0), (14), (28), (0), (28), (0), (14), (28),]
meta_locs = []
for i in range(len(x_list)):
xrange = x_list[i]
yrange = y_list[i]
import random
for iii in range(2):
for jjj in range(2):
x_begin = xrange+iii*7
x_end = xrange+iii*7 + 7
y_begin = yrange+jjj*7
y_end = yrange+jjj*7 + 7
relocs = list(range(len(colors)))
# Shuffle the list randomly
random.shuffle(relocs)
color_names_relocs = [color_names[i] for i in relocs]
color_relocs = [colors[i] for i in relocs]
color_dict_relocs = dict(zip(list(range(len(color_relocs))), color_relocs))
meta_locs.append(
{
"xrange": xrange,
"yrange": yrange,
"iii": iii,
"jjj": jjj,
"relocs": relocs,
"color_names_relocs": color_names_relocs,
"color_relocs": color_relocs,
"color_dict_relocs": color_dict_relocs,
})
# Spurious Feature Function
# spurious_correlation = 0.9
def generate_spurious_feature(meta_locs_in, spurious_correlation, images_in, label_):
images_ = images_in.clone()
color_correlation_list = {}
for i_ in range(len(meta_locs_in)):
color_correlation_list[i_] = []
imeta = meta_locs_in[i_]
xrange = imeta["xrange"]
yrange = imeta["yrange"]
iii = imeta["iii"]
jjj = imeta["jjj"]
color_relocs = imeta["color_relocs"]
color_names_relocs = imeta["color_names_relocs"]
# print("processing", xrange, yrange, iii, jjj)
x_begin = xrange+iii*7
x_end = xrange+iii*7 + 7
y_begin = yrange+jjj*7
y_end = yrange+jjj*7 + 7
def reshape_color(color_tensor, dim=0):
return torch.unsqueeze(torch.unsqueeze(color_tensor[:, dim], 1), 2).repeat(1, 7, 7)
for _i_n in range(len(images_)):
if random.random() < spurious_correlation:
label_int = int(label_[_i_n].item())
this_color = color_relocs[label_int]
color_correlation = 1
else:
this_color = random.choice(colors)
color_correlation = 0
# color_correlation_list.append(color_correlation)
images_[_i_n, 0, x_begin:x_end, y_begin:y_end] = this_color[0]
images_[_i_n, 1, x_begin:x_end, y_begin:y_end] = this_color[1]
images_[_i_n, 2, x_begin:x_end, y_begin:y_end] = this_color[2]
color_correlation_list[i_].append(color_correlation)
return {"images": images_,
"labels": label_,
"color_correlation_list": color_correlation_list}
# Spurious Feature Function
# spurious_correlation = 0.9
def generate_spurious_feature_single_color(meta_locs_in, spurious_correlation, images_in, label_):
images_ = images_in.clone()
color_correlation_list = {}
def reshape_color(color_tensor, dim=0):
return torch.unsqueeze(torch.unsqueeze(color_tensor[:, dim], 1), 2).repeat(1, 7, 7)
for _i_n in range(len(images_)):
color_relocs = meta_locs_in[0]["color_relocs"]
color_names_relocs = meta_locs_in[0]["color_names_relocs"]
if random.random() < spurious_correlation:
label_int = int(label_[_i_n].item())
this_color = color_relocs[label_int]
color_correlation = 1
else:
this_color = random.choice(colors)
color_correlation = 0
for i_ in range(len(meta_locs_in)):
color_correlation_list[i_] = []
imeta = meta_locs_in[i_]
xrange = imeta["xrange"]
yrange = imeta["yrange"]
iii = imeta["iii"]
jjj = imeta["jjj"]
# print("processing", xrange, yrange, iii, jjj)
x_begin = xrange+iii*7
x_end = xrange+iii*7 + 7
y_begin = yrange+jjj*7
y_end = yrange+jjj*7 + 7
# color_correlation_list.append(color_correlation)
images_[_i_n, 0, x_begin:x_end, y_begin:y_end] = this_color[0]
images_[_i_n, 1, x_begin:x_end, y_begin:y_end] = this_color[1]
images_[_i_n, 2, x_begin:x_end, y_begin:y_end] = this_color[2]
color_correlation_list[i_].append(color_correlation)
return {"images": images_,
"labels": label_,
"color_correlation_list": color_correlation_list}
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
class CustomImageDataset(Dataset):
def __init__(self, images, labels):
self.images = images.to(torch.float32)/255
self.labels = labels
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return self.images[idx], self.labels[idx]
print("processing training data")
assert args.colors in [1, 32]
if args.colors == 32:
gen_fun = generate_spurious_feature
else:
gen_fun = generate_spurious_feature_single_color
results_train = gen_fun(
meta_locs, args.id_sp,
dup_images_train,
labels_train)
print("processing IID validation data")
results_valIID = gen_fun(
meta_locs, args.id_sp,
dup_images_val,
labels_val)
print("processing OOD validation data")
results_valOOD = gen_fun(
meta_locs, 1 - args.p,
dup_images_val,
labels_val)
train_ds = CustomImageDataset(images=results_train["images"],
labels=results_train["labels"])
#Test
val_ds_ood = CustomImageDataset(images=results_valOOD["images"],
labels=results_valOOD["labels"])
val_ds_iid = CustomImageDataset(images=results_valIID["images"],
labels=results_valIID["labels"])
# IID Test
train_loader = DataLoader(train_ds, batch_size=64, shuffle=True)
val_loader_ood = DataLoader(val_ds_ood, batch_size=64, shuffle=True)
val_loader_iid = DataLoader(val_ds_iid, batch_size=64, shuffle=True)
print("Done")
import torch
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
batch_size = 100
n_iters = 5001
epochs = n_iters / (len(train_loader))
input_dim = len(results_train["images"][0].view(-1))
output_dim = 10
lr_rate = 0.001
# train_dataset = datasets.MNIST('~/datasets/mnist', train=True, download=True, transform=transforms.ToTensor())
# test_dataset = datasets.MNIST('~/datasets/mnist', train=False, download=True, transform=transforms.ToTensor())
# train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
class LogisticRegression(torch.nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegression, self).__init__()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x):
outputs = self.linear(x)
return outputs
class MLP(torch.nn.Module):
def __init__(self, input_dim, output_dim):
super(MLP, self).__init__()
# self.linear = torch.nn.Linear(input_dim, output_dim)
self.model = nn.Sequential(
nn.Linear(input_dim, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, output_dim))
def forward(self, x):
outputs = self.model(x)
return outputs
results = []
for restart in range(args.n_restarts):
print("-" * 20, F"restart {restart}", "-" * 20)
if restart >= args.n_restarts // 2:
model2 = MLP(input_dim, output_dim).cuda()
model1 = MLP(input_dim, output_dim).cuda()
else:
model1 = MLP(input_dim, output_dim).cuda()
model2 = MLP(input_dim, output_dim).cuda()
criterion = torch.nn.CrossEntropyLoss() # computes softmax and then the cross entropy
optimizer1 = torch.optim.Adam(model1.parameters(), lr=lr_rate)
optimizer2 = torch.optim.Adam(model2.parameters(), lr=lr_rate)
def evaluate_acc(evaluation_loader, model_):
total = 0
correct = 0
evaluation_iter = evaluation_loader.__iter__()
for j in range(len(evaluation_loader)):
images, labels = evaluation_iter.__next__()
images, labels = images.cuda(), labels.cuda()
images = images.view(len(images), -1)
outputs = model_(images)
_, predicted = torch.max(outputs.data, 1)
total+= labels.size(0)
correct+= (predicted == labels).sum()
accuracy = 100 * correct/total
return accuracy
def evaluate_acc_ensemble(evaluation_loader, model1_, model2_):
total = 0
correct = 0
evaluation_iter = evaluation_loader.__iter__()
for j in range(len(evaluation_loader)):
images, labels = evaluation_iter.__next__()
images, labels = images.cuda(), labels.cuda()
images = images.view(len(images), -1)
outputs = (model1_(images) + model2_(images))/2
_, predicted = torch.max(outputs.data, 1)
total+= labels.size(0)
correct+= (predicted == labels).sum()
accuracy = 100 * correct/total
return accuracy
iter = 0
for epoch in range(int(epochs)):
train_iter = train_loader.__iter__()
for i in range(len(train_loader)):
images, labels = train_iter.__next__()
images, labels = images.cuda(), labels.cuda()
images = (images.view(len(images), -1))
labels = (labels)
outputs2 = model2(images)
loss2 = get_loss(outputs2, labels)
optimizer2.zero_grad()
loss2.backward()
optimizer2.step()
outputs1 = model1(images)
loss1 = get_loss(outputs1, labels)
optimizer1.zero_grad()
loss1.backward()
optimizer1.step()
if iter%500==0:
# calculate Accuracy
acc_ood1 = evaluate_acc(evaluation_loader=val_loader_ood, model_=model1)
acc_iid1 = evaluate_acc(evaluation_loader=val_loader_iid, model_=model1)
acc_ood2 = evaluate_acc(evaluation_loader=val_loader_ood, model_=model2)
acc_iid2 = evaluate_acc(evaluation_loader=val_loader_iid, model_=model2)
ass_ensemble_ood = evaluate_acc_ensemble(val_loader_ood, model1, model2)
print(F"It: {iter}, Loss: {loss1.item():.4f}, IID Acc: {acc_iid1:.2f} and {acc_iid2:.2f}, OOD Acc: {acc_ood1:.2f} and {acc_ood2:.2f}, Ensemble OOD:{ass_ensemble_ood:.4f}.")
res = {
"restart": restart,
"iter": iter,
"loss": loss1.item(),
"acc_ood1": acc_ood1.item(),
"acc_iid1": acc_iid1.item(),
"acc_ood2": acc_ood2.item(),
"acc_iid2": acc_iid2.item(),
"ass_ensemble_ood": ass_ensemble_ood.item(),
}
results.append(res)
iter += 1
import pandas as pd
df_res = pd.DataFrame(results)
df_res = df_res[df_res.iter == 4500] # report the last step performance
print(F"Model1 OOD Acc={df_res.acc_ood1.mean():.4f}",
F"Model2 OOD Acc={df_res.acc_ood2.mean():.4f}",
F"ModelEnsemble OOD Acc={df_res.ass_ensemble_ood.mean():.4f}",)