-
Notifications
You must be signed in to change notification settings - Fork 5
/
chat.py
155 lines (124 loc) · 4.28 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
from transformers import AutoTokenizer, BloomForCausalLM
import transformers
import torch
from peft import PeftModel
model = None
tokenizer = None
generator = None
os.environ["CUDA_VISIBLE_DEVICES"]="1"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
def load_model(model_name, eight_bit=0, device_map="auto"):
global model, tokenizer, generator
print("Loading "+model_name+"...")
#if device_map == "zero":
# device_map = "balanced_low_0"
# config
#gpu_count = torch.cuda.device_count()
#print('gpu_count', gpu_count)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if device == "cuda":
model = BloomForCausalLM.from_pretrained(
'bigscience/bloomz-7b1-mt',
#device_map=device_map,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
load_in_8bit=True,
cache_dir="cache"
)#.cuda()
model = PeftModel.from_pretrained(
model,
"LinhDuong/doctorwithbloom",
torch_dtype=torch.float16,
#device_map={'':0},
device_map={"": device},
)
elif device == "mps":
model = BloomForCausalLM.from_pretrained(
'bigscience/bloomz-7b1-mt',
#device_map=device_map,
#device_map="auto",
device_map={"": device},
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
load_in_8bit=True,
cache_dir="cache"
)
model = PeftModel.from_pretrained(
model,
"LinhDuong/doctorwithbloom",
torch_dtype=torch.float16,
#device_map={'':0},
device_map={"": device},
)
else:
model = BloomForCausalLM.from_pretrained(
'bigscience/bloomz-7b1-mt',
#device_map=device_map,
#device_map="auto",
device_map={"": device},
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
load_in_8bit=True,
cache_dir="cache"
)
model = PeftModel.from_pretrained(
model,
"LinhDuong/doctorwithbloom",
torch_dtype=torch.float16,
device_map={"": device},
)
generator = model.generate
load_model("/home/linh/Downloads/bloom-alpaca-doctor")
First_chat = "ChatDoctor: I am ChatDoctor, what medical questions do you have?"
print(First_chat)
history = []
history.append(First_chat)
def go():
invitation = "ChatDoctor: "
human_invitation = "Patient: "
# input
msg = input(human_invitation)
print("")
history.append(human_invitation + msg)
fulltext = "If you are a doctor, please answer the medical questions based on the patient's description. \n\n" + "\n\n".join(history) + "\n\n" + invitation
#fulltext = "\n\n".join(history) + "\n\n" + invitation
print('SENDING==========')
print(fulltext)
print('==========')
generated_text = ""
gen_in = tokenizer(fulltext, return_tensors="pt").input_ids.cuda()
in_tokens = len(gen_in)
with torch.no_grad():
generated_ids = generator(
gen_in,
max_new_tokens=200,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
do_sample=True,
repetition_penalty=1.1, # 1.0 means 'off'. unfortunately if we penalize it it will not output Sphynx:
temperature=0.5, # default: 1.0
top_k = 50, # default: 50
top_p = 1.0, # default: 1.0
early_stopping=True,
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # for some reason, batch_decode returns an array of one element?
text_without_prompt = generated_text[len(fulltext):]
response = text_without_prompt
response = response.split(human_invitation)[0]
response.strip()
print(invitation + response)
print("")
history.append(invitation + response)
while True:
go()