-
Notifications
You must be signed in to change notification settings - Fork 11
/
train.py
executable file
·102 lines (83 loc) · 3.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from __future__ import division
import torch
import torch.optim as optim
from environment import atari_env
from utils import ensure_shared_grads
from model import A3Clstm
from player_util import Agent, player_act, player_start
from torch.autograd import Variable
def train(rank, args, shared_model, optimizer, env_conf):
torch.manual_seed(args.seed + rank)
env = atari_env(args.env, env_conf)
model = A3Clstm(env.observation_space.shape[0], env.action_space)
if optimizer is None:
if args.optimizer == 'RMSprop':
optimizer = optim.RMSprop(shared_model.parameters(), lr=args.lr)
if args.optimizer == 'Adam':
optimizer = optim.Adam(shared_model.parameters(), lr=args.lr)
env.seed(args.seed + rank)
state = env.reset()
player = Agent(model, env, args, state)
player.state = torch.from_numpy(state).float()
player.model.train()
epoch = 0
while True:
player.model.load_state_dict(shared_model.state_dict())
if player.done:
player.cx = Variable(torch.zeros(1, 512))
player.hx = Variable(torch.zeros(1, 512))
if player.starter:
player = player_start(player, train=True)
else:
player.cx = Variable(player.cx.data)
player.hx = Variable(player.hx.data)
for step in range(args.num_steps):
player = player_act(player, train=True)
if player.done:
break
if player.current_life > player.info['ale.lives']:
player.flag = True
player.current_life = player.info['ale.lives']
else:
player.current_life = player.info['ale.lives']
player.flag = False
if args.count_lives:
if player.flag:
player.done = True
break
if player.starter and player.flag:
player = player_start(player, train=True)
if player.done:
break
if player.done:
player.eps_len = 0
player.current_life = 0
state = player.env.reset()
player.state = torch.from_numpy(state).float()
player.flag = False
R = torch.zeros(1, 1)
if not player.done:
value, _, _ = player.model(
(Variable(player.state.unsqueeze(0)), (player.hx, player.cx)))
R = value.data
player.values.append(Variable(R))
policy_loss = 0
value_loss = 0
R = Variable(R)
gae = torch.zeros(1, 1)
for i in reversed(range(len(player.rewards))):
R = args.gamma * R + player.rewards[i]
advantage = R - player.values[i]
value_loss += 0.5 * advantage.pow(2)
# Generalized Advantage Estimataion
delta_t = player.rewards[i] + args.gamma * player.values[i + 1].data - player.values[i].data
gae = gae * args.gamma * args.tau + delta_t
policy_loss = policy_loss - player.log_probs[i] * Variable(gae) - 0.01 * player.entropies[i]
optimizer.zero_grad()
(policy_loss + value_loss).backward()
ensure_shared_grads(player.model, shared_model)
optimizer.step()
player.values = []
player.log_probs = []
player.rewards = []
player.entropies = []