-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtwarhmm.py
709 lines (598 loc) · 32.2 KB
/
twarhmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
import numpy as np
import numpy.random as npr
import scipy.stats
import torch
from tqdm.auto import trange
from torch.distributions import MultivariateNormal
import pickle
import os
from util import random_rotation, sum_tuples
import wandb
import time
from numba import njit, prange
device = torch.device('cpu')
dtype = torch.float64
to_t = lambda array: torch.tensor(array, device=device, dtype=dtype)
from_t = lambda tensor: tensor.to("cpu").detach().numpy()
class TWARHMM(object):
def __init__(self, config, taus=None): #config is a dictionary containing parameters
self.config = dict(config)
self.num_discrete_states = config["num_discrete_states"]
self.data_dim = config["data_dim"]
self.covariates_dim = config["covariates_dim"]
if np.any(taus == None): self.taus = np.logspace(-config["tau_scale"],config["tau_scale"],config["num_taus"],base=2)
else: self.taus = taus
if config["num_taus"] == 1:
self.taus = np.array([1.])
self.kappa = config["kappa"]
self.alpha = config["alpha"]
self.transitions = Transitions(self.num_discrete_states, len(self.taus), self.alpha, self.kappa, random_init=False)
self.observations = LinearRegressionObservations(self.num_discrete_states, self.data_dim,
self.covariates_dim, self.taus, config["covariance_reg"])
def fit(self, train_dataset, test_dataset, seed=0, num_epochs=50, fit_observations=True, fit_transitions=False, fit_tau_trans=False):
# Fit using full batch EM
num_train = sum([len(data["data"]) for data in train_dataset])
num_test = sum([len(data["data"]) for data in test_dataset])
# Initialize with a random posterior
#posteriors = initialize_posteriors(train_dataset, self.num_discrete_states * self.taus.shape[0], seed=seed)
total_states = self.num_discrete_states*len(self.taus)
posteriors = [Posterior(self, data_dict, total_states) for data_dict in train_dataset]
for posterior in posteriors:
posterior.update()
continuous_expectations, discrete_expectations = self.compute_expected_suff_stats(train_dataset, posteriors, self.taus, fit_observations, fit_transitions)
train_lls = []
test_lls = []
# Main loop
for itr in trange(num_epochs):
print(itr)
self.M_step(continuous_expectations, discrete_expectations, fit_observations, fit_transitions, fit_tau_trans)
for posterior in posteriors:
posterior.update()
# Compute the expected sufficient statistics under the new posteriors
continuous_expectations, discrete_expectations = self.compute_expected_suff_stats(train_dataset, posteriors, self.taus, fit_observations, fit_transitions)
# Store the average train likelihood
avg_train_ll = sum([p.marginal_likelihood() for p in posteriors]) / num_train
train_lls.append(avg_train_ll)
# Compute the posteriors for the test dataset too
test_posteriors = [Posterior(self,data_dict,total_states) for data_dict in test_dataset]
for posterior in test_posteriors:
posterior.update()
# Store the average test likelihood
avg_test_ll = sum([p.marginal_likelihood() for p in test_posteriors]) / num_test
test_lls.append(avg_test_ll)
# convert lls to arrays
train_lls = np.array(train_lls)
test_lls = np.array(test_lls)
return train_lls, test_lls, posteriors, test_posteriors
def fit_stoch(self, train_dataset, test_dataset, forgetting_rate=-0.5, seed=0, num_epochs=5, fit_observations=True,
fit_transitions=True, fit_tau_trans = True, compute_posteriors=True, wandb_log=True):
# Get some constants
num_batches = len(train_dataset)
taus = np.array(self.taus)
num_test = sum([len(data["data"]) for data in test_dataset])
total_states = self.num_discrete_states * len(self.taus)
num_train = sum([len(data["data"]) for data in train_dataset])
# Initialize the step size schedule
schedule = np.arange(1, 1 + num_batches * num_epochs) ** (forgetting_rate)
# Initialize progress bars
outer_pbar = trange(num_epochs)
inner_pbar = trange(num_batches)
outer_pbar.set_description("Epoch")
inner_pbar.set_description("Batch")
# Main loop
rng = npr.RandomState(seed)
train_lls = []
test_lls = []
it_times = np.zeros((num_epochs,num_batches))
for epoch in range(num_epochs):
perm = rng.permutation(num_batches)
inner_pbar.reset()
for itr in range(num_batches):
t = time.time()
minibatch = [train_dataset[perm[itr]]]
this_num_train = len(minibatch[0]["data"])
posteriors = [Posterior(self, data, total_states) for data in minibatch]
# E step: on this minibatch
for posterior in posteriors:
posterior.update()
if itr == 0 and epoch == 0: continuous_expectations, discrete_expectations = self.compute_expected_suff_stats(
minibatch, posteriors, taus, fit_observations, fit_transitions)
# M step: using current stats
self.M_step(continuous_expectations, discrete_expectations, fit_observations, fit_transitions, fit_tau=fit_tau_trans)
these_continuous_expectations, these_discrete_expectations = self.compute_expected_suff_stats(minibatch,
posteriors,
taus, fit_observations,
fit_transitions)
rescale = lambda x: num_train / this_num_train * x
# Rescale the statistics as if they came from the whole dataset
rescaled_cont_stats = tuple(rescale(st) for st in these_continuous_expectations)
rescaled_disc_stats = tuple(rescale(st) for st in these_discrete_expectations)
# Take a convex combination of the statistics using current step sz
stepsize = schedule[epoch * num_batches + itr]
continuous_expectations = tuple(
sum(x) for x in zip(tuple(st * (1 - stepsize) for st in continuous_expectations),
tuple(st * (stepsize) for st in rescaled_cont_stats)))
discrete_expectations = tuple(
sum(x) for x in zip(tuple(st * (1 - stepsize) for st in discrete_expectations),
tuple(st * (stepsize) for st in rescaled_disc_stats)))
# Store the normalized log likelihood for this minibatch
avg_mll = sum([p.marginal_likelihood() for p in posteriors]) / this_num_train
train_lls.append(avg_mll)
elapsed = time.time()-t
#print(elapsed)
it_times[epoch,itr] = elapsed
inner_pbar.set_description("Batch LL: {:.3f}".format(avg_mll))
inner_pbar.update()
if wandb_log: wandb.log({'batch_ll': avg_mll})
# Evaluate the likelihood and posteriors on the test dataset
if compute_posteriors:
test_posteriors = [Posterior(self, test_data, total_states, seed) for test_data in test_dataset]
for posterior in test_posteriors:
posterior.update()
avg_test_mll = sum([p.marginal_likelihood() for p in test_posteriors]) / num_test
else:
mlls = []
for test_data in test_dataset:
posterior = Posterior(self, test_data, total_states, seed)
posterior.update()
mlls.append(posterior.marginal_likelihood())
avg_test_mll = np.sum(mlls)/ num_test
test_posteriors = None
test_lls.append(avg_test_mll)
outer_pbar.set_description("Test LL: {:.3f}".format(avg_test_mll))
outer_pbar.update()
if wandb_log: wandb.log({'test_ll': avg_test_mll})
# convert lls to arrays
train_lls = np.array(train_lls)
test_lls = np.array(test_lls)
print('average iteration time: ', it_times.mean())
return train_lls, test_lls, posteriors, test_posteriors
def save(self, filepath):
# TODO: add optional artifact saving
os.mkdir(filepath)
obs_outfile = open(os.path.join(filepath, "model"), 'wb')
pickle.dump(self, obs_outfile)
obs_outfile.close()
@staticmethod
def load(dir):
model_infile = open(os.path.join(dir, "model"), 'rb')
model = pickle.load(model_infile)
model_infile.close()
return model
@staticmethod
def load_wnb(artifact_filepath):
artifact = wandb.use_artifact(artifact_filepath, type="model")
artifact_dir = artifact.download()
return TWARHMM.load(artifact_dir)
def E_step(self,initial_dist, transition_matrix, log_likes, compute_joints=True):
(Pz,Pt) = transition_matrix
max_factor = np.max(log_likes, axis=1, keepdims=True)
alphas, marginal_ll = self.nb_forward_pass(initial_dist, transition_matrix, log_likes,max_factor)
betas = self.nb_backward_pass(transition_matrix, log_likes, max_factor)
likes_tilde = np.exp(log_likes - np.max(log_likes, axis=1)[:, None])
hadamard_prod = alphas * likes_tilde * betas
expected_states = hadamard_prod / np.sum(hadamard_prod, axis=1)[:, None]
alphas = alphas.reshape((alphas.shape[0],self.num_discrete_states,len(self.taus)))
betas = betas.reshape((betas.shape[0], self.num_discrete_states, len(self.taus)))
log_likes = log_likes.reshape((log_likes.shape[0],self.num_discrete_states, len(self.taus)))
if compute_joints: #TODO: split into 2 matrices
alphas_z = alphas.sum(axis=2)
alphas_t = alphas.sum(axis=1)
betas_z = betas.sum(axis=2)
betas_t = betas.sum(axis=1)
log_likes_z = log_likes.sum(axis=2)
log_likes_t = log_likes.sum(axis=1)
likes_tilde_z = np.exp(log_likes_z - np.max(log_likes_z, axis=1)[:, None])
likes_tilde_t = np.exp(log_likes_t - np.max(log_likes_t, axis=1)[:, None])
hadamard_2_z = alphas_z[:-1, :, None] * likes_tilde_z[:-1, :, None] * likes_tilde_z[1:, None,:] * Pz[None, :, :] * betas_z[1:,None,:]
expected_joints_z = hadamard_2_z / np.sum(hadamard_2_z, axis=(1, 2), keepdims=True)
hadamard_2_t = alphas_t[:-1, :, None] * likes_tilde_t[:-1, :, None] * likes_tilde_t[1:, None, :] * Pt[None,:,:] * betas_t[1:,None,:]
expected_joints_t = hadamard_2_t / np.sum(hadamard_2_t, axis=(1, 2), keepdims=True)
expected_joints = (expected_joints_z,expected_joints_t)
else:
expected_joints = (None, None)
# Package the results into a dictionary summarizing the posterior
posterior = dict(expected_states=expected_states,
expected_joints=expected_joints,
marginal_ll=marginal_ll)
return posterior
def M_step(self, continuous_expectations, discrete_expectations, fit_observations, fit_transitions, fit_tau):
if fit_transitions: self.transitions.M_step(discrete_expectations, fit_tau=fit_tau)
if fit_observations: self.observations.M_step(continuous_expectations)
def forward_pass(self, initial_dist, transition_matrix, log_likes):
(Pz,Pt) = transition_matrix
alphas = np.zeros_like(log_likes)
marginal_ll = 0
T = log_likes.shape[0]
max_factor = np.max(log_likes, axis=1, keepdims=True)
likes_tilde = np.exp(log_likes - max_factor)
alphas[0] = np.squeeze(initial_dist)
for t in range(1, T):
A_t_minus_1 = np.sum(alphas[t - 1] * likes_tilde[t - 1], axis=-1)
# alphas[t] = (1 / A_t_minus_1) * \
# transition_matrix.T @ (alphas[t - 1] * likes_tilde[t - 1])
alphas[t] = (1 / A_t_minus_1) * \
np.einsum('ab,bc,cd->ad',Pz.T,np.reshape(alphas[t - 1] * likes_tilde[t - 1],(Pz.shape[0],Pt.shape[0])),Pt).ravel()
if A_t_minus_1 > 0 and not np.any(np.isnan(A_t_minus_1)):
marginal_ll += np.sum(np.log(A_t_minus_1) + max_factor[t - 1])
else:
print("yikes")
A_t = np.sum(alphas[t] * likes_tilde[t], axis=-1)
marginal_ll += np.sum(np.log(A_t) + max_factor[t])
return alphas, marginal_ll
def backward_pass(self, transition_matrix, log_likes):
(Pz,Pt) = transition_matrix
betas = np.zeros_like(log_likes)
T, K = log_likes.shape
max_factor = np.max(log_likes, axis=1, keepdims=True)
likes_tilde = np.exp(log_likes - max_factor)
betas[T - 1] = 1 / K
for t in range(T - 2, -1, -1): # iterate from T-2 ==> 0
#betas[t] = transition_matrix @ (betas[t + 1] * likes_tilde[t + 1])
betas[t] = np.einsum('ab,bc,cd->ad',Pz,np.reshape(betas[t + 1] * likes_tilde[t + 1],(Pz.shape[0],Pt.shape[0])),Pt.T).ravel()
betas[t] /= np.sum(betas[t]) # normalize before the next step
return betas
def compute_expected_suff_stats(self, dataset, posteriors, taus, fit_observations, fit_transitions):
assert isinstance(dataset, list)
assert isinstance(posteriors, list)
# Helper function to compute expected counts and sufficient statistics
# for a single time series and corresponding posterior.
def _compute_expected_suff_stats(data, posterior, taus, fit_observations, fit_transitions):
Dx = data["data"].shape[1]
D = data["covariates"].shape[1]
q = posterior.expected_states()
(fancy_e_z, fancy_e_t) = posterior.expected_transitions() #TODO: change to return two matrices
q += 1e-16
q = q / q.sum(axis=1, keepdims=True) # basically Laplace smoothing
L = taus.shape[0]
K = q.shape[1] / L
q = q.reshape((q.shape[0], int(K), L)) # dim TxKxL
K = q.shape[1]
dxxT_Etau = np.zeros((K, Dx, D))
xxT = np.zeros((K, D, D))
dxdxT_Etau2 = np.zeros((K, Dx, Dx))
T = np.zeros(K)
fancy_e_z_over_T = np.zeros((self.num_discrete_states, self.num_discrete_states))
fancy_e_t_over_T = np.zeros((len(self.taus), len(self.taus)))
q_one = np.zeros(self.num_discrete_states * len(self.taus))
for k in range(K):
qzt = q[:, k, :].sum(axis=-1)
if fit_observations:
#TODO: rewrite with descriptive variable names
q_taugivenz = q[:, k, :] / np.sum(q[:, k, :], axis=-1, keepdims=True)
E_tau_given_k = np.einsum('tl,l -> t', q_taugivenz, taus) # TxL and L -> T
E_tauinv_given_k = np.einsum('tl,l -> t', q_taugivenz, (1/taus)) # TxL and L -> T
# sufficient stats for A
dxxT_Etau[k, :, :] = np.einsum('t,tij->ij', qzt, data['suff_stats'][2])
xxT[k, :, :] = np.einsum('t,t,tij->ij', qzt, E_tauinv_given_k, data['suff_stats'][3])
# sufficient stats for Q
dxdxT_Etau2[k, :, :] = np.einsum('t,t,tij->ij', qzt, E_tau_given_k, data['suff_stats'][1])
T[k] = np.dot(qzt, data['suff_stats'][0])
if fit_transitions:
fancy_e_z_over_T = np.einsum('tij->ij', fancy_e_z)
fancy_e_t_over_T = np.einsum('tij->ij', fancy_e_t)
q_one = posterior.expected_states()[0]
stats = (tuple((dxxT_Etau, xxT, dxdxT_Etau2, T)),
tuple((fancy_e_z_over_T, fancy_e_t_over_T, q_one)))
return stats
# Sum the expected stats over the whole dataset
stats = (None,None)
for data, posterior in zip(dataset, posteriors):
these_stats = _compute_expected_suff_stats(data, posterior, taus, fit_observations, fit_transitions)
stats_cont = sum_tuples(stats[0], these_stats[0])
stats_disc = sum_tuples(stats[1], these_stats[1])
stats = (stats_cont, stats_disc)
return stats
def sample(self, T, bias=False): #TODO: might only work for relatively low total states
observations = self.observations
initial_dist = self.transitions.initial_dist
(Pz,Pt) = self.transitions.transition_matrix
transition_matrix = np.kron(Pz,Pt)
taus = self.taus
if bias:
x = np.hstack((np.zeros((T, observations.data_dim)),np.ones((T,1))))
else:
x = np.zeros((T, observations.data_dim))
z = np.zeros((T), dtype=np.int)
num_states = initial_dist.shape[0]
z[0] = np.random.choice(range(initial_dist.shape[0]), p=initial_dist)
timescaled_weights, timescaled_covs = self.observations.timescale_weights_covs(observations.weights, observations.covs, taus)
if bias:
x[0,:-1] = MultivariateNormal(to_t(np.zeros(observations.data_dim)), to_t(timescaled_covs[z[0], :, :])).sample()
else:
x[0] = MultivariateNormal(to_t(np.zeros(observations.data_dim)), to_t(timescaled_covs[z[0], :, :])).sample()
for i in range(1, T):
z[i] = np.random.choice(range(num_states), p=transition_matrix[z[i - 1], :])
# mu = timescaled_weights[z[i], :, :-1]@x[i-1] + timescaled_weights[z[i], :, -1] #changed to account for no bias
mu = timescaled_weights[z[i], :, :] @ x[i - 1]
cov = timescaled_covs[z[i], :, :]
if bias:
x[i,:-1] = MultivariateNormal(to_t(mu), to_t(cov)).sample()
else:
x[i] = MultivariateNormal(to_t(mu), to_t(cov)).sample()
if bias:
x = x[:,:-1]
return z, x
@staticmethod
@njit()
def nb_forward_pass(initial_dist, transition_matrix, log_likes, max_factor):
(Pz,Pt) = transition_matrix
alphas = np.zeros_like(log_likes)
marginal_ll = 0
T = log_likes.shape[0]
likes_tilde = np.exp(log_likes - max_factor)
alphas[0] = initial_dist
for t in range(1, T):
A_t_minus_1 = np.sum(alphas[t - 1] * likes_tilde[t - 1])
alphas[t] = (1 / A_t_minus_1) * \
(Pz.T @ (np.reshape(alphas[t - 1] * likes_tilde[t - 1],(Pz.shape[0],Pt.shape[0]))) @ Pt).ravel()
# alphas[t] = (1 / A_t_minus_1) * \
# np.einsum('ab,bc,cd->ad',Pz.T,np.reshape(alphas[t - 1] * likes_tilde[t - 1],(Pz.shape[0],Pt.shape[0])),Pt).ravel()
# if A_t_minus_1 > 0 and not np.any(np.isnan(A_t_minus_1)):
marginal_ll += np.sum(np.log(A_t_minus_1) + max_factor[t - 1])
# else:
# print("yikes")
A_t = np.sum(alphas[t] * likes_tilde[t])
marginal_ll += np.sum(np.log(A_t) + max_factor[t])
return alphas, marginal_ll
@staticmethod
@njit()
def nb_backward_pass(transition_matrix, log_likes, max_factor):
(Pz,Pt) = transition_matrix
betas = np.zeros_like(log_likes)
T, K = log_likes.shape
likes_tilde = np.exp(log_likes - max_factor)
betas[T - 1] = 1 / K
for t in range(T - 2, -1, -1): # iterate from T-2 ==> 0
betas[t] = (Pz @ (np.reshape(betas[t + 1] * likes_tilde[t + 1],(Pz.shape[0],Pt.shape[0]))) @ Pt.T).ravel()
#betas[t] = np.einsum('ab,bc,cd->ad',Pz,np.reshape(betas[t + 1] * likes_tilde[t + 1],(Pz.shape[0],Pt.shape[0])),Pt.T).ravel()
betas[t] /= np.sum(betas[t]) # normalize before the next step
return betas
class LinearRegressionObservations(object):
"""
Wrapper for a collection of Gaussian observation parameters.
"""
def __init__(self, num_states, data_dim, covariate_dim, taus, covariance_reg, random_weights=True):
"""
Initialize a collection of observation parameters for an HMM whose
observation distributions are linear regressions. The HMM has
`num_states` (i.e. K) discrete states, `data_dim` (i.e. D)
dimensional observations, and `covariate_dim` covariates.
In an ARHMM, the covariates will be functions of the past data.
Note: self.weights is always the continuous time operator.
"""
self.num_states = num_states
self.data_dim = data_dim
self.covariate_dim = covariate_dim
self.taus = taus
self.covariance_reg = covariance_reg
# Initialize the model parameters
if random_weights:
self.weights = np.zeros((num_states, data_dim, covariate_dim))
for i in range(num_states):
self.weights[i,:,:data_dim] = scipy.linalg.logm(random_rotation(data_dim,theta= np.pi/20))
else:
self.weights = np.zeros((num_states, data_dim, covariate_dim))
#TODO: do we need this scaling?
self.covs = .05*np.tile(np.eye(data_dim), (num_states, 1, 1))
@staticmethod
def precompute_suff_stats(dataset):
"""
Compute the sufficient statistics of the linear regression for each
data dictionary in the dataset. This modifies the dataset in place.
Parameters
----------
dataset: a list of data dictionaries.
Returns
-------
Nothing, but the dataset is updated in place to have a new `suff_stats`
key, which contains a tuple of sufficient statistics.
"""
###
# YOUR CODE BELOW
#
for data in dataset:
x = data['data']
phi = data['covariates']
#TODO: update to generalize for lags >1
if x.shape[1] == phi.shape[1]: #no bias
dx = x - phi
else:
dx = x - phi[:,:-1]
data['suff_stats'] = (np.ones(len(x)),
np.einsum('ti,tj->tij', dx, dx), # dxn dxn.T
np.einsum('ti,tj->tij', dx, phi), # dxn xn-1.T
np.einsum('ti,tj->tij', phi, phi)) # xn-1 xn-1.T
#
###
def log_likelihoods(self, data):
"""
Compute the matrix of log likelihoods of data for each state.
(I like to use torch.distributions for this, though it requires
converting back and forth between numpy arrays and pytorch tensors.)
Parameters
----------
data: a dictionary with multiple keys, including "data", the TxD array
of observations for this mouse.
Returns
-------
log_likes: a TxK array of log likelihoods for each datapoint and
discrete state.
"""
y = to_t(data["data"])
x = data["covariates"]
taus = self.taus
timescaled_weights, timescaled_covs = self.timescale_weights_covs(self.weights,self.covs,taus)
means = to_t(timescaled_weights @ x.T)
covs = to_t(timescaled_covs)
K, _, _ = means.shape
T, _ = x.shape
log_likes = np.zeros((T, K))
for k in range(K):
dist = torch.distributions.MultivariateNormal(means[k].T, covs[k],validate_args=False)
log_likes[:, k] = dist.log_prob(y)
#
return log_likes
def M_step(self, continuous_expectations):
"""
Compute the linear regression parameters given the expected
sufficient statistics.
Note: add a little bit (1e-4 * I) to the diagonal of each covariance
matrix to ensure that the result is positive definite.
Parameters
----------
stats: a tuple of expected sufficient statistics
Returns
-------
Nothing, but self.weights and self.covs are updated in place.
"""
# stats = tuple((dxxT_over_Etau,xxT_over_Etau))
dxxT_Etau, xxT, dxdxT_Etau2, T = continuous_expectations
###
for k in range(self.num_states):
AstarT = np.linalg.solve(xxT[k], dxxT_Etau[k].T)
self.weights[k] = AstarT.T #continuous time operator (unscaled)
self.covs[k] = self.covariance_reg* np.eye(self.data_dim) + \
(dxdxT_Etau2[k] - dxxT_Etau[k] @ AstarT - AstarT.T @ dxxT_Etau[k].T + AstarT.T @ xxT[k] @ AstarT) / T[k]
@classmethod
def timescale_weights_covs(cls, weights,covs,taus):
'''
scale continuous time operator
'''
tiled_weights = np.repeat(weights,len(taus),axis=0)
tiled_taus = np.tile(taus,weights.shape[0])
if weights.shape[1] == weights.shape[2]:
timescaled_weights = np.eye(weights.shape[1]) + tiled_weights/tiled_taus[:,None,None]
else:
timescaled_weights = np.hstack((np.eye(weights.shape[1]),np.zeros((weights.shape[1],1)))) + tiled_weights / tiled_taus[:, None, None]
tiled_covs = np.repeat(covs, len(taus), axis=0)
timescaled_covs = tiled_covs/tiled_taus[:,None,None]
return timescaled_weights, timescaled_covs
class Transitions(object):
def __init__(self, num_discrete_states, num_taus, alpha, kappa, random_init=True):
self.num_discrete_states = num_discrete_states
self.num_taus = num_taus
self.initial_dist = np.ones(self.num_discrete_states*self.num_taus) / (self.num_discrete_states*self.num_taus)
if random_init:
Pz = .99 * np.eye(self.num_discrete_states) + .01 * npr.rand(self.num_discrete_states,
self.num_discrete_states)
Pz /= Pz.sum(axis=1, keepdims=True)
Pt = .95 * np.eye(self.num_taus) + .05 * npr.rand(self.num_taus, self.num_taus)
Pt /= Pt.sum(axis=1, keepdims=True)
else:
if self.num_discrete_states != 1:
Pz = .99 * np.eye(self.num_discrete_states) + .01/(self.num_discrete_states-1) * (np.ones((self.num_discrete_states,
self.num_discrete_states))-np.eye(self.num_discrete_states))
else: Pz = np.array([[1.]])
if self.num_taus != 1:
Pt = .95 * np.eye(self.num_taus) + .025 * (np.diag(np.ones(self.num_taus-1), 1) + np.diag(np.ones(self.num_taus-1), -1))
Pt /= Pt.sum(axis=1, keepdims=True)
else: Pt = np.array([[1.]])
self.transition_matrix = (Pz,Pt)
self.alpha = alpha
self.kappa = kappa
def M_step(self, discrete_expectations, fit_z = True, fit_tau = True): #TODO: kron first pass is done
expected_joints_z, expected_joints_t, q_zero = discrete_expectations
if fit_z:
expected_joints_z += self.kappa * np.eye(self.num_discrete_states) + (self.alpha-1) * np.ones((self.num_discrete_states, self.num_discrete_states))
expected_joints_z += 1e-16
Pz = np.nan_to_num(expected_joints_z / expected_joints_z.sum(axis=1, keepdims=True))
else: Pz = self.transition_matrix[0]
if fit_tau:
expected_joints_t += self.kappa * np.eye(self.num_taus) + (self.alpha - 1) * np.ones((self.num_taus, self.num_taus))
expected_joints_t += 1e-16
Pt = np.nan_to_num(expected_joints_t / expected_joints_t.sum(axis=1, keepdims=True))
else:
Pt = self.transition_matrix[1]
self.transition_matrix = (Pz,Pt)
self.initial_dist = q_zero / np.sum(q_zero, keepdims=True)
class Posterior(object):
def __init__(self, model, data, num_states, seed=0):
self.model = model
self.data = data
self.num_states = num_states
self.num_taus = len(self.model.taus)
self.num_discrete_states = self.model.num_discrete_states
self._posterior = self._initialize_posteriors(data, num_states, seed)
def _initialize_posteriors(self, dataset, num_states, seed=0):
# rng = npr.RandomState(seed)
# expected_states = rng.rand(len(dataset["data"]), num_states)
# expected_states /= expected_states.sum(axis=1, keepdims=True)
expected_taus = np.ones(
(len(dataset["data"]), num_states, 2)) # mu, sigma for each time step and each discrete state
# expected_joints = rng.rand(len(dataset["data"]) - 1, num_states, num_states)
# expected_joints /= expected_joints.sum(axis=(1, 2), keepdims=True)
expected_states = np.zeros((len(dataset["data"]), num_states))
# expected_joints = (np.zeros((len(dataset["data"]) - 1, self.model.num_discrete_states, self.model.num_discrete_states)),
# np.zeros((len(dataset["data"]) - 1, len(self.model.taus),
# len(self.model.taus))))
expected_joints = (np.zeros((len(dataset["data"]), self.num_discrete_states,self.num_discrete_states)),
np.zeros((len(dataset["data"]),self.num_taus,self.num_taus)))
return dict(expected_states=expected_states,
expected_joints=expected_joints,
marginal_ll=-np.inf)
def update(self):
"""
Run the exact message passing algorithm to infer the posterior distribution.
"""
log_likes = self.model.observations.log_likelihoods(self.data)
#should throw error if compute_joints is False while trying to update transitions
#TODO: better way to handle compute_joints argument
new_posterior = self.model.E_step(self.model.transitions.initial_dist, self.model.transitions.transition_matrix, log_likes, compute_joints=True)
self._posterior = new_posterior
return self
def get_states(self):
# assumes posterior is already updated
# TODO: replace with Viterbi
# currently: for every z_t, find max q(z_t| x_1:T)
# goal: max z_1:T q(z_1:T| x_1:T)
return self._posterior['expected_states'].argmax(1)
def marginal_likelihood(self):
"""Compute the marginal likelihood of the data under the model.
Returns:
``\log p(x_{1:T})`` the marginal likelihood of the data
summing over discrete latent state sequences.
"""
if self._posterior is None:
self.update()
return self._posterior["marginal_ll"]
def expected_states(self):
"""Compute the expected values of the latent states under the
posterior distribution.
Returns:
``E[z_t | x_{1:T}]`` the expected value of the latent state
at time ``t`` given the sequence of data.
"""
if self._posterior is None:
self.update()
return self._posterior["expected_states"]
def expected_transitions(self):
"""Compute the expected transitions of the latent states under the
posterior distribution.
Returns:
``E[z_t z_{t+1} | x_{1:T}]`` the expected value of
adjacent latent states given the sequence of data.
"""
if self._posterior is None:
self.update()
return self._posterior["expected_joints"]
@staticmethod
def state_durations(states, total_states):
changepoints = states != np.hstack((states[1:], -1)) # 1 where state change occurs
changepoint_frame = np.where(changepoints)[0] # timestamps of changepoints
changepoint_states = states[changepoints] # state label of changepoint
state_durations = np.diff(np.hstack((0, changepoint_frame))) # duration before each change
state_durations[0] += 1
durations = []
for k in range(total_states):
changepoint_indices = changepoint_states == k
durations.append(state_durations[changepoint_indices])
return durations
def state_usage(self):
states = self.get_states()
return np.bincount(states, minlength=self.num_states)
def state_switch(self):
states = self.get_states()
changepoints = states != np.hstack((states[1:], -1)) # 1 where state change occurs
changepoint_states = states[changepoints] # state label of changepoint
return changepoint_states