-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkernels.py
28 lines (22 loc) · 1.07 KB
/
kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
from torch import nn
device = torch.device('cpu')
dtype = torch.float64
to_t = lambda array: torch.tensor(array, device=device, dtype=dtype)
from_t = lambda tensor: tensor.to("cpu").detach().numpy()
class RBF(nn.Module):
def __init__(self, num_discrete_states, lengthscales_Init=1.0):
super().__init__()
self.output_scale = nn.Parameter(torch.ones((num_discrete_states),device=device, dtype=dtype)) # one for each discrete state
self.lengthscales = nn.Parameter(lengthscales_Init*torch.ones((num_discrete_states),device=device, dtype=dtype)) # one for each discrete state
"""
Exponentiated Quadratic kernel class.
forward call evaluates Kernel Gram matrix at input arguments.
The output is num_discete_states x num_tau x num_tau
"""
def forward(self, x_grid):
"""
classic kernel function
"""
diffsq = (torch.div((x_grid.view(1,-1,1) - x_grid.view(1,1,-1)), self.lengthscales.view(-1,1,1)))**2
return self.output_scale.view(-1,1,1)**2 * torch.exp(-0.5 * diffsq)