-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy patheval_clip.py
33 lines (25 loc) · 1.15 KB
/
eval_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# pip3 install torchmetrics
import torch
import argparse
from PIL import Image
from tqdm import tqdm
from datasets import load_dataset
from torchvision.transforms.functional import pil_to_tensor
from torchmetrics.multimodal.clip_score import CLIPScore
parser = argparse.ArgumentParser(description="Evaluate CLIP-Score")
parser.add_argument('--generated_image_dir', type=str, required=True)
parser.add_argument('--dataset', type=str, required=True, default="limingcv/MultiGen-20M_canny_eval")
args = parser.parse_args()
dataset = load_dataset(args.dataset, cache_dir='data/huggingface_datasets', split='validation')
metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16").cuda()
bar = tqdm(range(len(dataset)), desc=f"Evaluating {args.dataset}")
rewards = []
for idx in range(len(dataset)):
data = dataset[idx]
prompt = data["text"]
image_paths = [f'{args.generated_image_dir}/group_{i}/{idx}.png' for i in range(4)]
images = [Image.open(x).convert('RGB') for x in image_paths]
images = [pil_to_tensor(x).cuda() for x in images]
metric.update(torch.stack(images), [prompt]*4)
bar.update(1)
print(metric.score / metric.n_samples)