Skip to content

Latest commit

 

History

History
203 lines (171 loc) · 6.12 KB

README.md

File metadata and controls

203 lines (171 loc) · 6.12 KB

Keras-ImageDataGenerator

This repository contains a modified version of Keras ImageDataGenerator. It generate batches of tensor with real-time data augmentation. This generator is implemented for foreground segmentation or semantic segmentation.

Please refer to Keras documentation for more details.

I. Usage of image.py

Setting class_mode=None, it returns a tensor of (image, label).

  1. Initialize paths where images flow from.
from keras.preprocessing.image import ImageDataGenerator

batch_size = 1
epoch = 50
h = 360 # image height
w = 480 # image width

# Training path
X_path= os.path.join('camvid', 'train') # input image
Y_path = os.path.join('camvid', 'trainannot') # ground-truth label

# Validation path
val_X_path = os.path.join('camvid', 'val')
val_Y_path = os.path.join('camvid', 'valannot')

# Note: All paths must contain the following structure:
#Example:
# camvid/train/images/image1.jpg ->(extension can be {'png', 'jpg', 'jpeg', 'bmp', 'ppm'})
# camvid/train/images/image2.jpg 
# camvid/train/images/...
  1. Create train_datagen and val_datagen objects:
train_datagen = ImageDataGenerator(
        #shear_range=0.2,
        #zoom_range=0.5,
        #width_shift_range=0.5,
        #height_shift_range=?,
        #rotation_range = 10,
        #horizontal_flip=True,
        fill_mode = 'constant',
        cval = 0., # value to fill input images when fill_mode='constant'
        label_cval = 11. # value to fill labels when fill_mode='constant'
        )
val_datagen = ImageDataGenerator(
        fill_mode = 'constant',
        cval = 0.,
        label_cval = 11.
        )
  1. Flow images with corresponding ground-truth labels from given directory:
train_flow = train_datagen.flow_from_directory(
        X_path, Y_path,
        target_size=(h, w),
        batch_size=batch_size,
        shuffle = True,
        #save_to_dir = os.path.join('camvid', 'debugs'), # uncomment to save (image, label) to dir for debuging mode
        #save_prefix = 'd',
        #save_format = 'png',
        class_mode=None
        )

val_flow = val_datagen.flow_from_directory(
        val_X_path, val_Y_path,
        target_size=(h, w),
        batch_size=batch_size,
        shuffle= False,
        #save_to_dir = os.path.join('camvid', 'debugs'),
        #save_prefix = 'd',
        #save_format = 'png',
        class_mode=None
        )
  1. Fit the generator:
model.fit_generator(train_flow,
                    steps_per_epoch = len(train_flow)/batch_size, 
                    validation_data=val_flow, 
                    validation_steps =len(val_flow)/batch_size,
                    epochs=epochs, 
                    #callbacks=[reduce, tb, early],
                    verbose=1
                    )

II. How about not using above dirty hack?

Instead of using the modified ImageDataGenerator in I., one can use the original Keras func. Below code is successfully tested using keras 2.2.4.

from keras.preprocessing.image import ImageDataGenerator

batch_size = 1
epochs = 50
h = 360 # image height
w = 480 # image width

# Training path
X_path= os.path.join('camvid', 'train') # input image
Y_path = os.path.join('camvid', 'trainannot') # ground-truth label

# Validation path
val_X_path = os.path.join('camvid', 'val')
val_Y_path = os.path.join('camvid', 'valannot')

# Train data generator
x_gen_args = dict(
                        rescale=1./255,
                        #featurewise_center=True,
                        #featurewise_std_normalization=True,
                        #shear_range=0.2,
                        #zoom_range=0.5,
                        #channel_shift_range=?,
                        #width_shift_range=0.5,
                        #height_shift_range=0.5,
                        rotation_range = 10,
                        horizontal_flip=True
                    )
y_gen_args = dict(
                        #featurewise_center=True,
                        #featurewise_std_normalization=True,
                        #shear_range=0.2,
                        #zoom_range=0.5,
                        #channel_shift_range=?,
                        #width_shift_range=0.5,
                        #height_shift_range=0.5,
                        rotation_range = 10,
                        horizontal_flip=True
                    )

image_datagen = ImageDataGenerator(**x_gen_args)
mask_datagen = ImageDataGenerator(**y_gen_args)

seed = 1 # the same seed is applied to both image_ and mask_generator
image_generator = image_datagen.flow_from_directory(
    X_path,
    target_size=(h, w),
    batch_size=batch_size,
    shuffle = True, # shuffle the training data
    class_mode=None, # set to None, in this case
    interpolation='nearest',
    seed=seed)

mask_generator = mask_datagen.flow_from_directory(
    Y_path,
    target_size=(h, w),
    color_mode='grayscale',
    batch_size=batch_size,
    shuffle = True,
    class_mode=None,
    interpolation='nearest',
    seed=seed)

# combine image_ and mask_generator into one
train_generator = zip(image_generator, mask_generator)
num_train = len(image_generator)

# val data generator
image_datagen = ImageDataGenerator()
mask_datagen = ImageDataGenerator()
seed = 1
image_generator = image_datagen.flow_from_directory(
    val_X_path,
    target_size=(ch, cw),
    batch_size=batch_size,
    shuffle = False, # we dont need to shuffle validation set
    class_mode=None,
    seed=seed)

mask_generator = mask_datagen.flow_from_directory(
    val_Y_path,
    target_size=(ch, cw),
    color_mode='grayscale',
    batch_size=batch_size,
    shuffle = False,
    seed=seed)

val_generator = zip(image_generator, mask_generator)
num_val = len(image_generator)

# fit the generators
model.fit_generator(
                    train_generator,
                    steps_per_epoch = num_train/batch_size, 
                    validation_data=val_generator,
                    validation_steps =num_val/batch_size,
                    epochs=epochs,
                    verbose=1
                    )

Contribution

Any contributions to improve this modification would be appreciated.