forked from mikudehuane/MPDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_global_model.py
632 lines (582 loc) · 22.9 KB
/
train_global_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# -*- coding: utf-8 -*-
# @Time : 2021/7/19 下午3:03
# @Author : islander
# @File : train_global_model.py
# @Software: PyCharm
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3,4,6"
# from tensorflow import ConfigProto
import tensorflow._api.v2.compat.v1 as tf
tf.disable_v2_behavior()
# 动态占用显卡空间
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.InteractiveSession(config=config)
import argparse
import json
import pprint
import random
import time
from copy import deepcopy
from tensorflow.python.platform import gfile
import data
import project_path
import train_utils
import logging
import model
import config
import sys
import os.path as osp
import log
import numpy as np
from gutils import parse_fp
from log import hook
import log.logging_config
_logger = logging.getLogger("train_global_model")
_custom_logger = log.CustomLogger(logger=_logger)
def config_args(): # 配置命令行参数
unparsed_args = sys.argv[1:] # 未解析的命令行参数
# parser 变量名按依赖顺序编号
parser0 = argparse.ArgumentParser(add_help=False)
run_conf_group_args = (
"run_config",
"运行配置,主要是传给 estimator.RunConfig 的参数",
)
def regis_run_conf():
runconf_group = parser0.add_argument_group(*run_conf_group_args)
runconf_group.add_argument(
"-rands",
"--tf_random_seed",
default=3,
type=int,
help="随机数种子,除了 tensorflow,也会传给 numpy 等随机数包",
)
runconf_group.add_argument(
"--save_summary_steps",
default=500,
type=int,
help="每这么多代存储 tensorflow 官方实现的一些 summary",
)
runconf_group.add_argument(
"--save_checkpoint_secs",
default=None,
type=int,
help="每这么长时间存储一次检查点,save_checkpoint_steps 和 save_checkpoint_secs 必须恰指定一个",
)
runconf_group.add_argument(
"--save_checkpoint_steps",
default=1000,
type=int,
help="每这么多迭代存储一次检查点,save_checkpoint_steps 和 save_checkpoint_secs 必须恰指定一个",
)
runconf_group.add_argument(
"--keep_checkpoint_max", default=5, type=int, help="最多存储多少个检查点"
)
runconf_group.add_argument(
"--keep_checkpoint_every_n_hours",
default=1,
type=int,
help="每多少个小时保留一个检查点,保留的检查点不会因 keep_checkpoint_max 而删除",
)
runconf_group.add_argument(
"--log_step_count_steps",
default=25,
type=int,
help="每这么多代记录一次日志",
)
runconf_group.add_argument(
"--device",
default=["gpu:0", "gpu:1", "gpu:2"],
nargs="+",
type=str,
help="运行设备,默认为 gpu. python your_script.py --device gpu:0 gpu:1",
)
runconf_group.add_argument(
"-rn",
"--run_name",
default="train_global_model_debug",
type=str,
help="本次运行的任务名,打印日志有时会记录作为提示信息,"
'日志将被记录在 f"{project_path.log_fd}/{run_name}"',
)
runconf_group.add_argument(
"-nts",
"--num_test_steps",
default=None,
type=int,
help="评估时,跑多少代运算,默认评估整个测试集",
)
regis_run_conf()
def regis_pai():
pai_group = parser0.add_argument_group("pai", "PAI 平台自动生成的参数")
pai_group.add_argument("--buckets", type=str, help="OSS 用户根目录")
# 默认 job 是 worker,任务数 1,任务索引 0,符合单机训练设定,task_count/index 会影响数据集划分
pai_group.add_argument(
"--job_name",
default="worker",
type=str,
choices=("worker", "ps", "evaluator", "chief"),
help="参数服务器策略中的任务名",
)
pai_group.add_argument(
"--task_index", default=0, type=int, help="job 内的任务 ID"
)
pai_group.add_argument(
"--task_count", default=1, type=int, help="job 内的任务数量"
)
# pai 还会传入 worker_hosts ps_hosts 等参数,脚本不需要,就不解析了
regis_pai()
train_group_args = ("train", "训练相关参数,如学习率")
def regis_train():
train_group = parser0.add_argument_group(*train_group_args)
train_group.add_argument(
"-opt",
"--optimizer",
type=str,
choices=("sgd", "adam", "adagrad"),
default="sgd",
help="使用的优化器",
)
train_group.add_argument(
"-bs", "--batch_size", default=32, type=int, help="模型训练的 batch size"
)
train_group.add_argument(
"--train_epoches", default=2, type=int, help="模型训练多少个 epoch"
)
train_group.add_argument(
"--loss",
default="cross_entropy",
type=str,
choices=("cross_entropy", "square"),
help="损失函数",
)
regis_train()
def regis_dataset():
dataset_group = parser0.add_argument_group("dataset", "数据集相关参数")
# 将参数no_shuffle保存到变量shuffle中,如果用户使用了该参数,则值为false,否则为true;action表示参数被使用时应该执行的动作
dataset_group.add_argument(
"--no_shuffle",
dest="shuffle",
action="store_false",
default=True,
help="训练时是否 shuffle 数据集,注,评估时不 shuffle",
)
dataset_group.add_argument(
"--shuffle_cache_size",
default=10000,
type=int,
help="shuffle 数据集时,缓存大小,缓存越大 shuffle 越均匀",
)
dataset_group.add_argument(
"-ds",
"--dataset",
default="movielens",
choices=("movielens", "amazon"),
help="使用的数据集",
)
dataset_group.add_argument(
"-tdf",
"--train_data_fd",
type=parse_fp,
default=osp.join(
project_path.project_fd,
"data",
"MovieLens",
"ml-20m",
"processed",
"ts=1225642324_train",
),
help="训练集的绝对路径,默认在 project_path.data_fd 下找",
)
dataset_group.add_argument(
"-edf",
"--eval_data_fd",
type=parse_fp,
default=osp.join(
project_path.project_fd,
"data",
"MovieLens",
"ml-20m",
"processed",
"ts=1225642324_test",
),
help="评估集的绝对路径,默认在 project_path.data_fd 下找",
)
dataset_group.add_argument(
"--mapping_fp",
type=parse_fp,
default=osp.join(
project_path.project_fd,
"data",
"MovieLens",
"ml-20m",
"processed",
"movie2category.csv",
),
help="电影类别映射文件的路径,默认在 project_path.data_fd 下找",
)
dataset_group.add_argument(
"--movie_genome_fp",
type=parse_fp,
default=osp.join(
project_path.project_fd,
"data",
"MovieLens",
"ml-20m",
"genome-scores.csv",
),
help="电影的硬编码 embedding 数据的路径",
)
regis_dataset()
def regis_model():
model_group = parser0.add_argument_group("model", "模型相关参数")
model_group.add_argument(
"-mo",
"--model",
default="din",
choices=("din", "lr", "lr_fast", "deepfm", "wide_deep", "pnn"),
help="训练的机器学习模型",
)
model_group.add_argument(
"-bn",
"--batch_norm",
default=None,
choices=(None, "bn"),
help="是否使用 batchnorm",
)
regis_model()
# parser中通过add_argument添加的所有参数格式来解析传入的命令行参数args
args, unparsed_args = parser0.parse_known_args(args=unparsed_args, namespace=None)
parser1 = argparse.ArgumentParser(add_help=False)
def regis_train1():
train_group1 = parser1.add_argument_group(*train_group_args)
train_group1.add_argument(
"-lr",
"--learning_rate",
type=float,
default={"sgd": 1.0, "adagrad": 0.1, "adam": 0.001}[args.optimizer],
help="学习率",
)
train_group1.add_argument(
"--batch_size_eval",
default=args.batch_size,
type=int,
help="模型评估时的 batch size,默认与训练一致",
)
regis_train1()
run_conf_group1 = parser1.add_argument_group(*run_conf_group_args)
run_conf_group1.add_argument(
"-dt",
"--distribute",
type=str,
default="MirroredStrategy",
choices=("OneDeviceStrategy", "ParameterServerStrategy", "MirroredStrategy"),
help="分布策略,默认单机[多卡]训练,可选参数服务器架构训练",
)
args, unparsed_args = parser1.parse_known_args(args=unparsed_args, namespace=args)
# 这个地方没有传入参数?好像没有实际意义。上面已经解析结束了,再将两个解析器合并再次解析的结果也是一样
parser_help = argparse.ArgumentParser(
parents=[parser0, parser1], description="训练一个全局模型"
)
parser_help.parse_known_args()
if unparsed_args:
_custom_logger.log_text(
"WARNING: Found unrecognized sys.argv: {}".format(unparsed_args)
)
return args
def main():
entry_time = time.strftime("%Y%m%d-%H%M%S", time.localtime())
# 解析命令行参数
args = config_args()
# 获取日志记录的目录,并创建几个相关文件
log_fd = osp.join(project_path.log_fd, args.run_name) # 本次运行记录日志的目录
txt_fd = osp.join(log_fd, "txt") # 文本日志存放目录
checkpoint_fd = osp.join(log_fd, "checkpoint") # 断点日志存放目录
tensorboard_fd = osp.join(log_fd, "tensorboard") # tensorboard summary 存放目录
# 创建几个目录
for fd in [txt_fd, checkpoint_fd, tensorboard_fd]:
gfile.MakeDirs(fd)
# 这几个文件,传 None 表示不写
# is_chief 默认情况下为true
# chief可能是在分布式环境下,表示主节点的概念,其他训练节点称为worker
is_chief = args.job_name == "worker" and args.task_index == 0
if is_chief:
meta_f = gfile.GFile(
osp.join(txt_fd, "meta_{}.txt".format(entry_time)), "a"
) # 用于记录一些运行基本信息
train_log_f = gfile.GFile(
osp.join(txt_fd, "training_{}.csv".format(entry_time)), "w"
) # 训练中记录动态的前向传播结果
else:
meta_f = None
train_log_f = None
if args.job_name == "evaluator":
eval_testset_log_f = gfile.GFile(
osp.join(txt_fd, "testset_{}.csv".format(entry_time)), "w"
) # 记录测试集评估结果
else:
eval_testset_log_f = None
def flush_all(): # 刷新所有文件,flush()方法会将内部缓冲区的数据立即写入文件,确保数据不会因为程序崩溃或其他原因而丢失。
for f in [meta_f, train_log_f, eval_testset_log_f]:
if f is not None:
f.flush()
try:
# 记录当前键入的命令
command = log.get_command()
_custom_logger.log_text(
"current command:\n{}".format(command), file_handler=meta_f
)
# 记录处理后的命令行参数
args_str = pprint.pformat(args.__dict__)
_custom_logger.log_text("parsed args:\n" + args_str, file_handler=meta_f)
if is_chief:
# noinspection PyTypeChecker
json.dump(
args.__dict__,
fp=gfile.GFile(
osp.join(txt_fd, "args_{}.json".format(entry_time)), "w"
),
) # 将参数记录下来
# _logger.info('命令行参数解析完成')
_custom_logger.log_text("命令行参数解析完成\n", file_handler=meta_f)
tf.random.set_random_seed(args.tf_random_seed)
random.seed(args.tf_random_seed)
np.random.seed(args.tf_random_seed)
# _logger.info('随机数种子设置完成')
_custom_logger.log_text("随机数种子设置完成\n", file_handler=meta_f)
estimator_config = train_utils.get_estimator_config(
args=args, checkpoint_fd=checkpoint_fd
)
# _logger.info('获取 estimator_config 成功')
_custom_logger.log_text("获取 estimator_config 成功\n", file_handler=meta_f)
log_responsible_fns = (
gfile.GFile(
osp.join(txt_fd, "train_fns_{}.txt".format(args.task_index)), "w"
)
if args.job_name == "worker"
else None
)
# 确定输入配置, 默认movielens
if args.dataset == "movielens":
config_pkg = config.movielens
elif args.dataset == "amazon":
config_pkg = config.amazon
else:
raise ValueError("Unrecognized dataset {}".format(args.dataset))
# 默认是din
if args.model == "din":
config_pkg = config_pkg.din
elif args.model == "lr":
config_pkg = config_pkg.lr
elif args.model == "deepfm":
config_pkg = config_pkg.deepfm
elif args.model == "wide_deep":
config_pkg = config_pkg.wide_deep
elif args.model == "pnn":
config_pkg = config_pkg.pnn
else:
raise ValueError("unrecognized args.model = {}".format(args.model))
# feature config 记录了每个特征的处理方式,是一个字典
fea_config = deepcopy(config_pkg.FEA_CONFIG)
shared_emb_config = deepcopy(config_pkg.SHARED_EMB_CONFIG)
if args.dataset == "movielens":
if args.model == "lr":
print("loading genomes")
movie_genomes = data.movielens.utils.load_genome(args.movie_genome_fp)
print("genomes loaded")
else:
movie_genomes = None
try:
train_input_fn = train_utils.get_movielens_input_fn(
data_fd=args.train_data_fd,
mapping_fp=args.mapping_fp,
fea_config=fea_config,
shuffle=args.shuffle,
shuffle_cache_size=args.shuffle_cache_size,
batch_size=args.batch_size,
slice_count=args.task_count,
slice_index=args.task_index,
log_responsible_fns=log_responsible_fns,
movie_genome_fp=movie_genomes,
)
finally:
if log_responsible_fns is not None:
log_responsible_fns.close()
eval_input_fn = train_utils.get_movielens_input_fn(
data_fd=args.eval_data_fd,
mapping_fp=args.mapping_fp,
fea_config=fea_config,
shuffle=False,
batch_size=args.batch_size_eval,
movie_genome_fp=movie_genomes,
)
elif args.dataset == "amazon":
try:
train_input_fn = train_utils.get_amazon_input_fn(
data_fd=args.train_data_fd,
mapping_fp=args.mapping_fp,
fea_config=fea_config,
shuffle=args.shuffle,
shuffle_cache_size=args.shuffle_cache_size,
batch_size=args.batch_size,
slice_count=args.task_count,
slice_index=args.task_index,
seed_plus=0,
log_responsible_fns=log_responsible_fns,
)
finally:
if log_responsible_fns is not None:
log_responsible_fns.close()
eval_input_fn = train_utils.get_amazon_input_fn(
data_fd=args.eval_data_fd,
mapping_fp=args.mapping_fp,
fea_config=fea_config,
shuffle=False,
batch_size=args.batch_size_eval,
seed_plus=1000000,
)
else:
raise ValueError("Unrecognized dataset {}".format(args.dataset))
# _logger.info('获取数据输入函数成功')
_custom_logger.log_text("获取数据输入函数成功\n", file_handler=meta_f)
# 构建模型
if args.model == "din":
net = model.din.Din(
input_config=fea_config,
shared_emb_config=shared_emb_config,
use_moving_statistics=True,
)
elif args.model == "lr":
net = model.linear.LinearRegression(
input_config=fea_config,
fast_forward=False,
batch_norm=args.batch_norm,
use_moving_statistics=True,
)
elif args.model == "deepfm":
net = model.deepfm.DeepFM(
input_config=fea_config,
shared_emb_config=shared_emb_config,
use_moving_statistics=True,
)
elif args.model == "wide_deep":
net = model.wide_deep.WideDeep(
input_config=fea_config,
shared_emb_config=shared_emb_config,
use_moving_statistics=True,
)
elif args.model == "pnn":
net = model.pnn.PNN(
input_config=fea_config,
shared_emb_config=shared_emb_config,
use_moving_statistics=True,
)
else:
raise ValueError("unrecognized args.model = {}".format(args.model))
if is_chief:
# noinspection PyTypeChecker
json.dump(
{"fea_config": fea_config, "shared_emb_config": shared_emb_config},
gfile.GFile(osp.join(txt_fd, "config_{}.json".format(entry_time)), "w"),
)
# _logger.info('初始化模型成功')
_custom_logger.log_text("初始化模型成功\n", file_handler=meta_f)
# 初始化 estimator,params 将会作为 model_fn 的参数,estimator_kwargs 追加为关键字参数
# 根据给定的参数获取优化器
optimizer = {
"adam": tf.train.AdamOptimizer,
"sgd": tf.train.GradientDescentOptimizer,
"adagrad": tf.train.AdagradOptimizer,
}[args.optimizer](learning_rate=args.learning_rate)
estimator = tf.estimator.Estimator(
model_fn=net.model_fn,
config=estimator_config,
params={"optimizer": optimizer, "loss": args.loss},
)
# _logger.info('构建 estimator 成功')
_custom_logger.log_text("构建 estimator 成功\n", file_handler=meta_f)
metric_names = [
"auc",
"accuracy",
"false_prop",
"neg_log_loss",
"square_loss",
"num_samples",
"max_true_prob",
]
if train_log_f is not None:
content = ",".join(["global_step", *metric_names]) + "\n"
train_log_f.write(content)
if eval_testset_log_f is not None:
eval_testset_log_f.write(",".join(["global_step", *metric_names]) + "\n")
# 这里将训练过程中,每隔25轮的summary保存到文件中train_log_f,间隔轮数可调整
log_train_hook = hook.LogAccumulatedHook(
tensor_name_dict=net.tensor_name_dict,
metric_names=metric_names,
file_handler=train_log_f,
hint="{} training forward pass evaluation".format(args.run_name),
log_step_count_steps=args.log_step_count_steps,
)
# 如果job_name为worker,则不会进行evaluator的记录
log_eval_hook = hook.LogAccumulatedHook(
tensor_name_dict=net.tensor_name_dict,
metric_names=metric_names,
file_handler=eval_testset_log_f,
hint="{} evaluate testset".format(args.run_name),
save_best_model_config={
"fd": osp.join(checkpoint_fd, "best"),
"metric_name": "auc",
"cmp": lambda a, b: a > b,
},
)
save_epoch_checkpoint_hook = hook.SaveEpochCheckpointHook(
checkpoint_fd=osp.join(checkpoint_fd, "epoch")
)
# estimator.train 会使用如下几个回调
train_hooks = [
log_train_hook,
hook.LogVariableHook(file_handler=meta_f),
save_epoch_checkpoint_hook,
]
# estimator.evaluate 会使用如下几个回调
eval_hooks = [log_eval_hook, hook.LogVariableHook()]
# _logger.info('创建回调完成')
_custom_logger.log_text("创建回调完成\n", file_handler=meta_f)
train_spec = tf.estimator.TrainSpec(
input_fn=train_input_fn,
max_steps=None,
hooks=train_hooks,
)
eval_spec = tf.estimator.EvalSpec(
input_fn=eval_input_fn,
steps=args.num_test_steps,
start_delay_secs=0,
throttle_secs=10,
name="testset",
hooks=eval_hooks,
)
if args.distribute == "OneDeviceStrategy": # 单机训练,先评估一次
estimator.evaluate(
input_fn=eval_input_fn,
steps=args.num_test_steps,
name="testset",
hooks=eval_hooks,
)
# 给定了 train_epoches,input_fn 仅循环一个 epoch,因此调用 epoch 数量次 train_and_evaluate,每次调用都是一个epoch
flush_all()
for epoch in range(args.train_epoches):
_custom_logger.log_text(
"epoch {} start in {}".format(epoch, time.asctime()),
file_handler=meta_f,
)
# _logger.info('epoch {} start'.format(epoch))
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
finally:
# 关闭所有文件
def _close(f):
if f is not None:
f.close()
[_close(f) for f in [train_log_f, eval_testset_log_f, meta_f]]
if __name__ == "__main__":
# os.environ["CUDA_VISIBLE_DEVICES"] = str(6)
main()