-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdatasets.py
370 lines (316 loc) · 12.6 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# -*- coding: utf-8 -*-
"""
This file contains the PyTorch dataset for multi-modal data and
related helpers.
"""
import spectral
import numpy as np
import torch
import torch.utils
import torch.utils.data
import os
from tqdm import tqdm
try:
# Python 3
from urllib.request import urlretrieve
except ImportError:
# Python 2
from urllib import urlretrieve
from utils import open_file, padding_image
DATASETS_CONFIG = {
"Houston2013": {
"urls": [],
},
"Trento":{
"urls": [],
},
"Augsburg":{
"urls": [],
},
}
try:
from custom_datasets import CUSTOM_DATASETS_CONFIG
DATASETS_CONFIG.update(CUSTOM_DATASETS_CONFIG)
except ImportError:
pass
class TqdmUpTo(tqdm):
"""Provides `update_to(n)` which uses `tqdm.update(delta_n)`."""
def update_to(self, b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks transferred so far [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n) # will also set self.n = b * bsize
def get_dataset(dataset_name, target_folder="./", datasets=DATASETS_CONFIG):
"""Gets the dataset specified by name and return the related components.
Args:
dataset_name: string with the name of the dataset
target_folder (optional): folder to store the datasets, defaults to ./
datasets (optional): dataset configuration dictionary, defaults to prebuilt one
Returns:
img: 3D hyperspectral image (WxHxB)
gt: 2D int array of labels
label_values: list of class names
ignored_labels: list of int classes to ignore
rgb_bands: int tuple that correspond to red, green and blue bands
"""
palette = None
if dataset_name not in datasets.keys():
raise ValueError("{} dataset is unknown.".format(dataset_name))
dataset = datasets[dataset_name]
folder = target_folder + datasets[dataset_name].get("folder", dataset_name + "/")
if dataset.get("download", True):
# Download the dataset if is not present
if not os.path.isdir(folder):
os.makedirs(folder)
for url in datasets[dataset_name]["urls"]:
# download the files
filename = url.split("/")[-1]
if not os.path.exists(folder + filename):
with TqdmUpTo(
unit="B",
unit_scale=True,
miniters=1,
desc="Downloading {}".format(filename),
) as t:
urlretrieve(url, filename=folder + filename, reporthook=t.update_to)
elif not os.path.isdir(folder):
print("WARNING: {} is not downloadable.".format(dataset_name))
if dataset_name == 'Houston2013':
# Load the image
img1 = open_file(folder + 'HSI.mat')['HSI'].astype(np.float32)
rgb_bands = (59, 40, 23)
img2 = open_file(folder + 'LiDAR.mat')['LiDAR'].astype(np.float32)
img2 = np.expand_dims(img2, axis=2) # (349, 1905) --> (349, 1905, 1)
gt = open_file(folder + 'gt.mat')['gt'] # Here, the gt file is load for filtering NaN out and visualization.
# normalization method 1: map to [0, 1]
[m, n, l] = img1.shape
for i in range(l):
minimal = img1[:, :, i].min()
maximal = img1[:, :, i].max()
img1[:, :, i] = (img1[:, :, i] - minimal) / (maximal - minimal)
minimal = img2.min()
maximal = img2.max()
img2 = (img2 - minimal) / (maximal - minimal)
label_values = [
"Unclassified",
"Healthy grass",
"Stressed grass",
"Synthetic grass",
"Trees",
"Soil",
"Water",
"Residential",
"Commercial",
"Road",
"Highway",
"Railway",
"Parking Lot 1",
"Parking Lot 2",
"Tennis Court",
"Running Track"
]
ignored_labels = [0]
elif dataset_name == "Trento":
# Load the image
img1 = open_file(folder + 'HSI.mat')['HSI'].astype(np.float32)
rgb_bands = (40, 20, 10)
img2 = open_file(folder + 'LiDAR.mat')['LiDAR'].astype(np.float32)
img2 = np.expand_dims(img2, axis=2) # (600, 166) --> (600, 166, 1)
gt = open_file(folder + 'gt.mat')['gt'] # Here, the gt file is load for filtering NaN out and visualization.
# normalization method 1: map to [0, 1]
[m, n, l] = img1.shape
for i in range(l):
minimal = img1[:, :, i].min()
maximal = img1[:, :, i].max()
img1[:, :, i] = (img1[:, :, i] - minimal) / (maximal - minimal)
minimal = img2.min()
maximal = img2.max()
img2 = (img2 - minimal) / (maximal - minimal)
label_values = [
"Unclassified",
"Apple trees",
"Buildings",
"Ground",
"Wood",
"Vineyard",
"Roads"
]
ignored_labels = [0]
elif dataset_name == "Augsburg":
# Load the image
img1 = open_file(folder + 'data_HS_LR.mat')['data_HS_LR'].astype(np.float32)
rgb_bands = (40, 20, 10) # To Do: fix
img2 = open_file(folder + 'data_DSM.mat')['data_DSM'].astype(np.float32)
img2 = np.expand_dims(img2, axis=2) # (332, 485) --> (332, 485, 1)
gt = open_file(folder + 'gt.mat')['gt'] # Here, the gt file is load for filtering NaN out and visualization.
# normalization method 1: map to [0, 1]
[m, n, l] = img1.shape
for i in range(l):
minimal = img1[:, :, i].min()
maximal = img1[:, :, i].max()
img1[:, :, i] = (img1[:, :, i] - minimal) / (maximal - minimal)
minimal = img2.min()
maximal = img2.max()
img2 = (img2 - minimal) / (maximal - minimal)
label_values = [
"Unclassified",
"Forest",
"Residential Area",
"Industrial Area",
"Low Plants",
"Allotment",
"Commercial Area",
"Water"
]
ignored_labels = [0]
else:
# Custom dataset
(
img,
gt,
rgb_bands,
ignored_labels,
label_values,
palette,
) = CUSTOM_DATASETS_CONFIG[dataset_name]["loader"](folder)
# Filter NaN out
nan_mask = np.isnan(img1.sum(axis=-1))
if np.count_nonzero(nan_mask) > 0:
print(
"Warning: NaN have been found in the data. It is preferable to remove them beforehand. Learning on NaN data is disabled."
)
img1[nan_mask] = 0
gt[nan_mask] = 0
ignored_labels.append(0)
ignored_labels = list(set(ignored_labels))
# Normalization
# img = np.asarray(img, dtype="float32")
# img = (img - np.min(img)) / (np.max(img) - np.min(img))
# the shapes of img1 and img2 are both (H, W, C)
return img1, img2, gt, label_values, ignored_labels, rgb_bands, palette
class MultiModalX(torch.utils.data.Dataset):
""" Generic class for a MultiModal Data """
def __init__(self, data, data2, gt, **hyperparams):
"""
Args:
data: The first modality (usually 3D hyperspectral image)
data2: The second modality (usually LiDAR image)
gt: 2D array of labels
patch_size: int, size of the spatial neighbourhood
center_pixel: bool, set to True to consider only the label of the
center pixel
data_augmentation: bool, set to True to perform random flips
supervision: 'full' or 'semi' supervised algorithms
"""
super(MultiModalX, self).__init__()
self.data = data
self.data2 =data2
self.label = gt
self.name = hyperparams["dataset"]
self.patch_size = hyperparams["patch_size"]
self.ignored_labels = set(hyperparams["ignored_labels"])
self.flip_augmentation = hyperparams["flip_augmentation"]
self.radiation_augmentation = hyperparams["radiation_augmentation"]
self.mixture_augmentation = hyperparams["mixture_augmentation"]
self.center_pixel = hyperparams["center_pixel"]
supervision = hyperparams["supervision"]
# Fully supervised : use all pixels with label not ignored
if supervision == "full":
mask = np.ones_like(gt)
for l in self.ignored_labels:
mask[gt == l] = 0
# Semi-supervised : use all pixels, except padding
elif supervision == "semi":
mask = np.ones_like(gt)
x_pos, y_pos = np.nonzero(mask)
p = self.patch_size // 2
self.indices = np.array(
[
(x, y)
for x, y in zip(x_pos, y_pos)
if x > p and x < data.shape[0] - p and y > p and y < data.shape[1] - p
]
)
self.labels = [self.label[x, y] for x, y in self.indices]
np.random.shuffle(self.indices)
@staticmethod
def flip(*arrays):
horizontal = np.random.random() > 0.5
vertical = np.random.random() > 0.5
if horizontal:
arrays = [np.fliplr(arr) for arr in arrays]
if vertical:
arrays = [np.flipud(arr) for arr in arrays]
return arrays
@staticmethod
def rotate(*arrays):
rotate = np.random.random() > 0.5
if rotate:
angle = np.random.choice([1, 2, 3])
arrays = [np.rot90(arr, k=angle) for arr in arrays]
return arrays
@staticmethod
def radiation_noise(data, alpha_range=(0.9, 1.1), beta=1 / 25):
alpha = np.random.uniform(*alpha_range)
noise = np.random.normal(loc=0.0, scale=1.0, size=data.shape)
return alpha * data + beta * noise
def mixture_noise(self, data, label, beta=1 / 25):
alpha1, alpha2 = np.random.uniform(0.01, 1.0, size=2)
noise = np.random.normal(loc=0.0, scale=1.0, size=data.shape)
data2 = np.zeros_like(data)
for idx, value in np.ndenumerate(label):
if value not in self.ignored_labels:
l_indices = np.nonzero(self.labels == value)[0]
l_indice = np.random.choice(l_indices)
assert self.labels[l_indice] == value
x, y = self.indices[l_indice]
data2[idx] = self.data[x, y]
return (alpha1 * data + alpha2 * data2) / (alpha1 + alpha2) + beta * noise
def __len__(self):
return len(self.indices)
def __getitem__(self, i):
x, y = self.indices[i]
x1, y1 = x - self.patch_size // 2, y - self.patch_size // 2
x2, y2 = x1 + self.patch_size, y1 + self.patch_size
data = self.data[x1:x2, y1:y2]
data2 = self.data2[x1:x2, y1:y2]
label = self.label[x1:x2, y1:y2]
if self.flip_augmentation and self.patch_size > 1:
# Perform data augmentation (only on 2D patches)
if np.random.random() > 0.5:
data, data2, label = self.flip(data, data2, label)
else:
data, data2, label = self.rotate(data, data2, label)
if self.radiation_augmentation and np.random.random() < 0.1:
data = self.radiation_noise(data)
if self.mixture_augmentation and np.random.random() < 0.2:
data = self.mixture_noise(data, label)
# Copy the data into numpy arrays (PyTorch doesn't like numpy views)
data = np.asarray(np.copy(data).transpose((2, 0, 1)), dtype="float32")
data2 = np.asarray(np.copy(data2).transpose((2, 0, 1)), dtype="float32")
label = np.asarray(np.copy(label), dtype="int64")
# Load the data into PyTorch tensors
data = torch.from_numpy(data)
data2 = torch.from_numpy(data2)
label = torch.from_numpy(label)
# Extract the center label if needed
if self.center_pixel and self.patch_size > 1:
label = label[self.patch_size // 2, self.patch_size // 2]
# Remove unused dimensions when we work with invidual spectrums
elif self.patch_size == 1:
data = data[:, 0, 0]
data2 = data2[:, 0, 0]
label = label[0, 0]
# Add a fourth dimension for 3D CNN
# if self.patch_size > 1:
# # Make 4D data ((Batch x) Planes x Channels x Width x Height)
# data = data.unsqueeze(0)
# data2 = data2.unsqueeze(0)
return data, data2, label