forked from whwu95/MVFNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_recognizer.py
145 lines (123 loc) · 5.03 KB
/
test_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""test recognizer"""
import argparse
import warnings
import mmcv
import numpy as np
import torch
from mmcv.runner import obj_from_dict
from torch.nn.parallel import DataParallel, DistributedDataParallel
# from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from codes import datasets
from codes.core import (get_dist_info, init_dist, mean_class_accuracy,
multi_gpu_test, single_gpu_test, top_k_accuracy)
from codes.datasets import build_dataloader
from codes.models import build_recognizer
from codes.utils import load_checkpoint
# from codes.core import MMDataParallel, MMDistributedDataParallel
warnings.filterwarnings("ignore", category=UserWarning)
args = None
def parse_args():
"""parse_args"""
parser = argparse.ArgumentParser(description='Test an action recognizer')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'mpi', 'slurm'],
default='none',
help='job launcher')
parser.add_argument(
'--gpus',
type=int,
default=1,
help='number of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument(
'--average-clips',
choices=['score', 'prob'],
default='prob',
help='average type when averaging test clips')
parser.add_argument('--out', help='output result file',
default='default.pkl')
# only for TSN3D
parser.add_argument('--fcn_testing', action='store_true',
help='use fcn testing for 3D convnet')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
return args
def main():
"""main"""
global args
args = parse_args()
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = mmcv.Config.fromfile(args.config)
cfg.gpus = args.gpus
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
# pass arg of fcn testing
if args.fcn_testing:
cfg.model.update({'fcn_testing': True})
cfg.model['cls_head'].update({'fcn_testing': True})
if cfg.test_cfg is None:
cfg.test_cfg = dict(average_clips=args.average_clips)
else:
cfg.test_cfg.average_clips = args.average_clips
# for regular testing
# pipeline_type = [op['type'] for op in cfg.test_pipeline]
# if 'ThreeCrop' in pipeline_type:
# cfg.model.cls_head.spatial_size = 8
dataset = obj_from_dict(cfg.data.test, datasets, dict(test_mode=True))
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
model = build_recognizer(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
load_checkpoint(model, args.checkpoint, map_location='cpu')
data_loader = build_dataloader(
dataset,
num_gpus=1 if distributed else cfg.gpus,
videos_per_gpu=1,
workers_per_gpu=1,
dist=distributed,
shuffle=False)
if distributed:
# model = MMDistributedDataParallel(model.cuda())
model = DistributedDataParallel(model.cuda(), device_ids=[
torch.cuda.current_device()])
outputs = multi_gpu_test(model, data_loader)
rank, _ = get_dist_info()
else:
# model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
model = DataParallel(model, device_ids=range(cfg.gpus)).cuda()
outputs = single_gpu_test(model, data_loader)
rank = 0
if args.out and rank == 0:
# print('\nwriting results to {}'.format(args.out))
# for videos_per_gpu > 1, vstack list of array
results = np.vstack(outputs) # list(1 x n_class) -> n_video x n_class
# outputs = np.vstack(outputs) [:, np.newaxis, :]
mmcv.dump(results, args.out)
gt_labels = []
for i in range(len(dataset)):
ann = dataset.video_infos[i]
gt_labels.append(ann['label'])
# if args.use_softmax:
# print("Averaging score over {} clips with softmax".format(
# outputs[0].shape[0]))
# results = [softmax(res, dim=1).mean(axis=0) for res in outputs]
# else:
# print("Averaging score over {} clips without softmax (ie, raw)".
# format(outputs[0].shape[0]))
# results = [res.mean(axis=0) for res in outputs]
# results = [res.squeeze() for res in outputs]
top1, top5 = top_k_accuracy(results, gt_labels, k=(1, 5))
mean_acc = mean_class_accuracy(results, gt_labels)
print("Mean Class Accuracy = {:.02f}".format(mean_acc * 100))
print("Top-1 Accuracy = {:.02f}".format(top1 * 100))
print("Top-5 Accuracy = {:.02f}".format(top5 * 100))
if __name__ == '__main__':
main()