forked from mattam82/Coq-Equations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPOPLMark1a.v
296 lines (259 loc) · 12.2 KB
/
POPLMark1a.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
(** ** POPLMark 1a solution
Original development by Rafaël Bocquet: POPLmark part 1A with
inductive definition of scope and well-scoped variables (and terms,
types and environments). *)
Require Import Program.
Require Import Equations.Equations.
Require Import Coq.Classes.EquivDec.
Require Import Arith.
Definition scope := nat.
Inductive var : scope -> Set :=
| FO : forall {n}, var (S n)
| FS : forall {n}, var n -> var (S n)
.
Derive Signature NoConfusion NoConfusionHom for var.
Inductive scope_le : scope -> scope -> Set :=
(* We use an equality in the constructor here to avoid requiring UIP on [nat]. *)
| scope_le_n : forall {n m}, n = m -> scope_le n m
| scope_le_S : forall {n m}, scope_le n m -> scope_le n (S m)
| scope_le_map : forall {n m}, scope_le n m -> scope_le (S n) (S m).
Derive Signature NoConfusion NoConfusionHom Subterm for scope_le.
Equations scope_le_app {a b c} (p : scope_le a b) (q : scope_le b c) : scope_le a c :=
(* by wf (signature_pack q) scope_le_subterm := *)
scope_le_app p (scope_le_n eq_refl) := p;
scope_le_app p (scope_le_S q) := scope_le_S (scope_le_app p q);
scope_le_app p (scope_le_map q) with p :=
{ | scope_le_n eq_refl := scope_le_map q;
| scope_le_S p' := scope_le_S (scope_le_app p' q);
| (scope_le_map p') := scope_le_map (scope_le_app p' q) }.
(* Proof. all:repeat constructor. Defined. *)
Lemma scope_le_app_len n m (q : scope_le n m) : scope_le_app (scope_le_n eq_refl) q = q.
Proof.
depind q; simp scope_le_app; trivial. destruct e; reflexivity. now rewrite IHq.
Qed.
Hint Rewrite scope_le_app_len : scope_le_app.
Inductive type : scope -> Type :=
| tvar : forall {n}, var n -> type n
| ttop : forall {n}, type n
| tarr : forall {n}, type n -> type n -> type n
| tall : forall {n}, type n -> type (S n) -> type n
.
Derive Signature NoConfusion NoConfusionHom for type.
Inductive env : scope -> scope -> Set :=
| empty : forall {n m}, n = m -> env n m
| cons : forall {n m}, type m -> env n m -> env n (S m)
.
Derive Signature NoConfusion NoConfusionHom for env.
Lemma env_scope_le : forall {n m}, env n m -> scope_le n m.
Proof. intros n m Γ; depind Γ. constructor; auto. constructor 2; auto. Defined.
Equations env_app {a b c} (Γ : env a b) (Δ : env b c) : env a c :=
env_app Γ (empty eq_refl) := Γ;
env_app Γ (cons t Δ) := cons t (env_app Γ Δ).
Lemma cons_app : forall {a b c} (Γ : env a b) (Δ : env b c) t, cons t (env_app Γ Δ) = env_app Γ (cons t Δ).
Proof. intros. autorewrite with env_app. reflexivity. Qed.
Hint Rewrite @cons_app.
Equations map_var {n m} (f : var n -> var m) (t : var (S n)) : var (S m) :=
map_var f FO := FO;
map_var f (FS x) := FS (f x).
Lemma map_var_a : forall {n m o} f g a, @map_var n o (fun t => f (g t)) a = @map_var m o f (@map_var n m g a).
Proof. depind a; autorewrite with map_var; auto. Qed.
Lemma map_var_b : forall {n m} (f g : var n -> var m), (forall x, f x = g x) ->
forall a, map_var f a = map_var g a.
Proof. depind a; autorewrite with map_var; try f_equal; auto. Qed.
Equations lift_var_by {n m} (p : scope_le n m) : var n -> var m :=
lift_var_by (scope_le_n eq_refl) := fun t => t;
lift_var_by (scope_le_S p) := fun t => FS (lift_var_by p t);
lift_var_by (scope_le_map p) := map_var (lift_var_by p).
Equations lift_type_by {n m} (f : scope_le n m) (t : type n) : type m :=
lift_type_by f (tvar x) := tvar (lift_var_by f x);
lift_type_by f ttop := ttop;
lift_type_by f (tarr a b) := tarr (lift_type_by f a) (lift_type_by f b);
lift_type_by f (tall a b) := tall (lift_type_by f a) (lift_type_by (scope_le_map f) b).
Lemma lift_var_by_app : forall {b c} (p : scope_le b c) {a} (q : scope_le a b) t,
lift_var_by p (lift_var_by q t) = lift_var_by (scope_le_app q p) t.
Proof with autorewrite with lift_var_by map_var scope_le_app in *; auto.
intros b c p; induction p; intros a q t; try destruct e...
- rewrite IHp; auto.
- generalize dependent p. generalize dependent t.
depind q; subst; intros...
rewrite IHp...
specialize (IHp _ q).
rewrite (map_var_b (lift_var_by (scope_le_app q p)) (fun t => lift_var_by p (lift_var_by q t))); eauto.
rewrite <- map_var_a; auto.
Qed.
Hint Rewrite @lift_var_by_app : lift_var_by.
Lemma lift_type_by_id : forall {n} (t : type n) P, (forall x, lift_var_by P x = x) -> lift_type_by P t = t.
Proof.
depind t; intros; autorewrite with lift_type_by; rewrite ?H, ?IHt1, ?IHt2; auto.
intros; depelim x; autorewrite with lift_var_by map_var; try f_equal; auto.
Qed.
Lemma lift_type_by_n : forall {n} (t : type n), lift_type_by (scope_le_n eq_refl) t = t.
Proof. intros; eapply lift_type_by_id; intros; autorewrite with lift_var_by; auto. Qed.
Hint Rewrite @lift_type_by_n : lift_type_by.
Lemma lift_type_by_app : forall {a} t {b c} (p : scope_le b c) (q : scope_le a b),
lift_type_by p (lift_type_by q t) = lift_type_by (scope_le_app q p) t.
Proof.
depind t; intros b c p; depind p; intros q;
repeat (autorewrite with scope_le_app lift_var_by lift_type_by;
rewrite ?IHt1, ?IHt2; auto).
Qed.
Hint Rewrite @lift_type_by_app : lift_type_by.
Equations lookup {n} (Γ : env O n) (x : var n) : type n :=
lookup (n:=(S _)) (cons a Γ) FO := lift_type_by (scope_le_S (scope_le_n eq_refl)) a;
lookup (n:=(S _)) (cons a Γ) (FS x) := lift_type_by (scope_le_S (scope_le_n eq_refl)) (lookup Γ x)
.
Lemma lookup_app {n} (Γ : env O (S n)) {m} (Δ : env (S n) (S m)) x :
lookup (env_app Γ Δ) (lift_var_by (env_scope_le Δ) x) =
lift_type_by (env_scope_le Δ) (lookup Γ x).
Proof with autorewrite with lookup scope_le_app env_app lift_var_by lift_type_by; auto.
induction Δ; subst; simpl...
rewrite IHΔ...
Qed.
Hint Rewrite @lookup_app : lookup.
(** The subtyping judgment *)
Inductive sa : forall {n}, env O n -> type n -> type n -> Prop :=
| sa_top : forall {n} (Γ : env O n) s, sa Γ s ttop
| sa_var_refl : forall {n} (Γ : env O n) x, sa Γ (tvar x) (tvar x)
| sa_var_trans : forall {n} (Γ : env O (S n)) x t,
sa Γ (lookup Γ x) t ->
sa Γ (tvar x) t
| sa_arr : forall {n} {Γ : env O n} {t1 t2 s1 s2},
sa Γ t1 s1 ->
sa Γ s2 t2 ->
sa Γ (tarr s1 s2) (tarr t1 t2)
| sa_all : forall {n} {Γ : env O n} {t1 t2 s1 s2},
sa Γ t1 s1 ->
sa (cons t1 Γ) s2 t2 ->
sa Γ (tall s1 s2) (tall t1 t2)
.
Derive Signature for sa.
Inductive sa_env : forall {n}, env O n -> env O n -> Prop :=
| sa_empty : sa_env (empty eq_refl) (empty eq_refl)
| sa_cons : forall {n} (Γ Δ : env O n) a b,
sa Γ a b ->
sa_env Γ Δ -> sa_env (cons a Γ) (cons b Δ)
.
Derive Signature for sa_env.
Lemma sa_refl : forall {n} (Γ : env O n) x, sa Γ x x.
Proof. depind x; constructor; auto. Qed.
Lemma sa_env_refl : forall {n} (Γ : env O n), sa_env Γ Γ.
Proof. depind Γ; subst; constructor; auto using sa_refl. Qed.
Inductive env_extend : forall {b c}, env O b -> env O c -> scope_le b c -> Prop :=
| env_extend_refl : forall {b} (Γ : env O b), env_extend Γ Γ (scope_le_n eq_refl)
| env_extend_cons : forall {b c} (Γ : env O b) (Δ : env O c) p a,
env_extend Γ Δ p -> env_extend (cons a Γ) (cons (lift_type_by p a) Δ) (scope_le_map p)
| env_extend_2 : forall {b c} (Γ : env O b) (Δ : env O c) p a,
env_extend Γ Δ p -> env_extend Γ (cons a Δ) (scope_le_S p)
.
Derive Signature for env_extend.
Lemma env_app_extend {b c} (Γ : env O b) (Δ : env b c) : env_extend Γ (env_app Γ Δ) (env_scope_le Δ).
Proof.
depind Δ; subst; intros; autorewrite with env_app scope_le_app in *; simpl;
constructor; auto.
Qed.
Lemma env_extend_lookup {b c} (Γ : env O b) (Δ : env O c) P :
env_extend Γ Δ P -> forall x, lift_type_by P (lookup Γ x) = lookup Δ (lift_var_by P x).
Proof with autorewrite with lift_type_by lift_var_by map_var lookup scope_le_app; auto.
intros A; depind A; intros x; depelim x...
all:rewrite <- IHA...
Qed.
Lemma sa_weakening {b} (Γ : env O b) p q (A : sa Γ p q) :
forall {c P} (Δ : env O c) (B : env_extend Γ Δ P),
sa Δ (lift_type_by P p) (lift_type_by P q).
Proof.
induction A; intros c P Δ B;
autorewrite with lift_type_by in *;
try (auto; constructor; auto; fail).
- depelim c; [depelim B|].
constructor; rewrite <- (env_extend_lookup _ _ _ B); auto.
- constructor; auto.
eapply IHA2. constructor. auto.
Qed.
Lemma sa_weakening_app {b} (Γ : env O b) p q (A : sa Γ p q) {c} (Δ : env b c) :
sa (env_app Γ Δ) (lift_type_by (env_scope_le Δ) p) (lift_type_by (env_scope_le Δ) q).
Proof.
intros; eapply sa_weakening.
exact A.
auto using env_app_extend.
Qed.
Lemma sa_toname {n m} Γ (Δ : env (S n) m) x :
x <> lift_var_by (env_scope_le Δ) FO ->
forall p q, lookup (env_app (cons p Γ) Δ) x = lookup (env_app (cons q Γ) Δ) x.
Proof.
depind Δ; subst; intros A p q;
depelim x; simpl in *;
autorewrite with env_app lookup lift_var_by in *; auto.
- exfalso; auto.
- specialize (IHΔ Γ x). forward IHΔ by intro; subst; auto.
now rewrite (IHΔ p q).
Qed.
Lemma var_dec_eq : forall {n} (x y : var n), {x = y} + {x <> y}.
Proof.
depind x; depelim y.
- left; reflexivity.
- right; intro H; depelim H.
- right; intro H; depelim H.
- destruct (IHx y); subst.
+ left; reflexivity.
+ right; intro H; depelim H. contradiction.
Qed.
Lemma sa_narrowing {s} q :
(forall {s'} (P : scope_le s s') (Γ : env O s') p (A : sa Γ p (lift_type_by P q))
s'' (Δ : env (S s') s'')
a b (B : sa (env_app (cons (lift_type_by P q) Γ) Δ) a b),
sa (env_app (cons p Γ) Δ) a b) /\
(forall {s'} (A : scope_le s s') (Γ : env O s') p (B : sa Γ p (lift_type_by A q))
r (C : sa Γ (lift_type_by A q) r),
sa Γ p r).
Proof.
induction q;
match goal with
| [ |- _ /\ ?Q ] =>
assert (PLOP:Q);
[ intros s' A Γ p B; depind B; subst; intros r C;
autorewrite with lift_type_by lift_var_by in *; try noconf H;
try (constructor; auto; fail);
try (constructor; eapply IHB; autorewrite with lift_type_by; auto; fail);
try (depelim C; subst; constructor; destruct_pairs; try noconf H; eauto; fail);
try (specialize (IHB _ _ _ IHq1 IHq2 A); destruct_pairs; try noconf H; constructor; eauto; fail); auto
| split;
[ intros s' P Γ p A; depind A; subst;
intros s'' Δ a b B; destruct_pairs;
remember (env_app (cons _ Γ) Δ) as PPP; depind B;
try (subst; constructor; auto; autorewrite with core; auto; fail);
clear B; constructor; specialize (IHB _ HeqPPP); subst *;
try (noconf H; auto);
match goal with
| [ IHB : sa _ (lookup (env_app (cons ?a _) _) ?x) _
|- sa _ (lookup (env_app (cons ?b _) _) _) _ ] =>
destruct (var_dec_eq x (lift_var_by (env_scope_le Δ) FO)) as [Heq|Hneq] ;
[ subst;
autorewrite with lookup lift_type_by lift_var_by in *;
try (noconf H; auto);
autorewrite with lookup lift_type_by lift_var_by scope_le_app in *;
try solve [auto; depelim IHB;
autorewrite with lookup lift_type_by lift_var_by scope_le_app in *;
auto; constructor; auto; fail];
try solve [(apply sa_var_trans in A || assert (A := sa_arr A1 A2) || assert (A := sa_all A1 A2));
match goal with
| [ A : sa _ ?p _ |- _ ] =>
(apply sa_weakening_app with (Δ0:=cons p (empty eq_refl)) in A;
apply sa_weakening_app with (Δ0:=Δ) in A;
autorewrite with lookup env_app lift_var_by lift_type_by in *; simpl in *;
eapply PLOP; [exact A | exact IHB])
end; fail]
| rewrite sa_toname with (p:=b) (q:=a); auto
]
end
| assumption
]
]
end.
- clear IHB1 IHB2.
depelim C; [constructor|]; destruct_pairs.
constructor; eauto.
simpl in H. simpl in H0.
apply (H1 _ A Γ _ C1 _ (empty eq_refl) _ _) in B2; autorewrite with env_app in B2; eauto.
Qed.
Print Assumptions sa_narrowing.
(* Closed under the global context *)