Skip to content

scalar numeric ops with np.nan are inconsistent w.r.t. return type #368

Open
@jreback

Description

@jreback
In [9]: nd.array([None,None],dtype='?float64') + np.nan
Out[9]: 
nd.array([NA, NA],
         type="2 * ?float64")

In [10]: nd.array([1.,2.],dtype='?float64') + np.nan
Out[10]: 
nd.array([NA, NA],
         type="2 * ?float64")

# shouldn't this be the same as [10] ? or is ``np.nan`` just not 'missing' for ``float64``?
In [11]: nd.array([1.,2.],dtype='float64') + np.nan
Out[11]: 
nd.array([nan, nan],
         type="2 * float64")

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions