-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathGenerateInitialGuess.m
239 lines (198 loc) · 7.78 KB
/
GenerateInitialGuess.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
function guesses = GenerateInitialGuess(mvtp)
Params = GetModelParams();
VehicleParams = GetVehicleParams();
profiles = mvtp.profiles;
obstacles = mvtp.obstacles;
coarse = zeros(Params.nv, Params.nfe, 3);
config = struct();
config.wheel_base = VehicleParams.Lw;
config.front_hang = VehicleParams.Lf;
config.rear_hang = VehicleParams.Lr;
config.width = VehicleParams.Lb;
config.delta_max = VehicleParams.phi_max;
config.xy_bounds = [Params.x_min, Params.x_max, Params.y_min, Params.y_max];
for ii = 1:Params.nv
try
res = cppha(profiles(ii, :), obstacles, config);
if size(res, 1) < Params.nfe
ha_path = navPath(stateSpaceSE2, res(:, 1:3));
interpolate(ha_path, Params.nfe);
coarse(ii, :, :) = ha_path.States;
else
pick_idx = linspace(1, size(res, 1), Params.nfe);
coarse(ii, :, :) = res(floor(pick_idx), 1:3);
end
catch
fprintf('%d HA failed\n', ii);
astar = GenerateAStarPlanner(mvtp.obstacles);
path = plan(astar, profiles(ii, 1:2), profiles(ii, 4:5), 'world');
idx = fix(linspace(1, size(path, 1), Params.nfe));
cur_x = path(idx, 1);
cur_y = path(idx, 2);
cur_theta = ones(Params.nfe, 1) * atan2(profiles(ii, 5) - profiles(ii, 2), profiles(ii, 4) - profiles(ii, 1));
cur_theta(1) = profiles(ii, 3);
coarse(ii, :, :) = [cur_x, cur_y, cur_theta];
end
end
guesses = zeros(Params.nv, Params.nfe, 7); % x, y, theta, v, phi, a, omega
real_tf = Params.tf_max;
for ii = 1:Params.nv
cur_x = coarse(ii, :, 1);
cur_y = coarse(ii, :, 2);
cur_theta = ToContinuousAngle(coarse(ii, :, 3));
[guesses(ii, :, :), tf] = ResamplePath(cur_x, cur_y, cur_theta);
ratio = tf / real_tf;
guesses(ii, :, [4 6 7]) = guesses(ii, :, [4 6 7]) * ratio; % scale v, a, omega respectivly
end
end
%%
function planner = GenerateAStarPlanner(obstacles)
Params = GetModelParams();
map = binaryOccupancyMap(Params.x_scale, Params.y_scale, 1 / Params.xy_resolution);
map.LocalOriginInWorld = [Params.x_min, Params.y_min];
xs = Params.x_min:Params.xy_resolution:Params.x_max;
ys = Params.y_min:Params.xy_resolution:Params.y_max;
% From https://www.mathworks.com/matlabcentral/answers/495387-how-to-create-a-filled-circle-within-a-matrix
[mesh_x, mesh_y] = meshgrid(xs, ys);
circle_pixels = zeros(length(ys), length(xs));
for ii = 1:size(obstacles, 1)
circle_pixels = circle_pixels | (mesh_y - obstacles(ii, 2)).^2 ...
+ (mesh_x - obstacles(ii, 1)).^2 <= obstacles(ii, 3).^2;
end
circle_pixels = flip(circle_pixels, 1);
setOccupancy(map, map.LocalOriginInWorld, circle_pixels);
inflate(map, GetVehicleParams().radius);
planner = plannerAStarGrid(map);
end
%% Generate optimal velocity profile
function [guess, terminal_time] = ResamplePath(cur_x, cur_y, cur_theta)
Params = GetModelParams();
nfe = Params.nfe;
% Judge velocity direction
tracking_angles = atan2(diff(cur_y), diff(cur_x));
tracking_angles = ToContinuousAngle(tracking_angles);
vdr = double(abs(wrapToPi(tracking_angles - cur_theta(1:end-1))) < pi/2);
vdr(vdr==0) = -1;
vdr(end+1) = vdr(end);
spikes = [0 find(abs(diff(vdr)) == 2) nfe];
x1 = [];
y1 = [];
theta1 = [];
v = [];
a = [];
terminal_time = 0;
for ii = 1 : length(spikes)-1
range = spikes(ii)+1:spikes(ii+1);
[end_time, x0, y0, theta0, v0, a0] = CalculateSegment(cur_x(range), ...
cur_y(range), cur_theta(range), vdr(range(end)), terminal_time);
terminal_time = end_time;
x1 = [x1, x0(1:end-1)];
y1 = [y1, y0(1:end-1)];
theta1 = [theta1, theta0(1:end-1)];
v = [v, v0(1:end-1)];
a = [a, a0(1:end-1)];
end
x1 = [x1, x0(end)];
y1 = [y1, y0(end)];
theta1 = [theta1, theta0(end)];
v = [v, 0];
a = [a, 0];
index_sequence = round(linspace(1, length(x1), nfe));
x1 = x1(index_sequence);
y1 = y1(index_sequence);
theta1 = theta1(index_sequence);
v = v(index_sequence);
a = a(index_sequence);
% calculate steering inputs
VehicleParams = GetVehicleParams();
dt = terminal_time / nfe;
dtheta = diff(theta1);
v_next = v(2:end);
phi = atan(dtheta * VehicleParams.Lw ./ (v_next * dt));
phi_nan = find(v_next == 0);
phi_prev = max(1, phi_nan - 1);
phi(phi_nan) = phi(phi_prev);
phi = min(VehicleParams.phi_max, max(-VehicleParams.phi_max, phi));
omega = min(VehicleParams.omega_max, max(-VehicleParams.omega_max, diff(phi) / dt));
phi = [0, phi];
omega = [0, 0, omega];
guess = [x1' y1' theta1' v' phi' a' omega'];
if any(isnan(guess(:)))
assert(false);
end
end
function [end_time, x0, y0, theta0, v, a] = CalculateSegment(seg_x, seg_y, seg_theta, seg_vdr, begin_time)
% Calculate path length
ds = hypot(diff(seg_x), diff(seg_y));
seg_s = [0 cumsum(ds)];
% remove duplicate entries
[seg_s, ia] = unique(seg_s);
removed_index = setdiff(1:length(seg_x), ia);
seg_x(removed_index) = []; seg_y(removed_index) = []; seg_theta(removed_index) = [];
% Calculate s(t), a(t) and v(t) locally
[s, v, a, terminal_time] = SolveMinTimeOptimalControlProblem(seg_s(end));
% Specify end_time
end_time = terminal_time + begin_time;
% Refine x(t), y(t), and theta(t)
x0 = interp1(seg_s, seg_x, s, 'linear', 'extrap');
y0 = interp1(seg_s, seg_y, s, 'linear', 'extrap');
theta0 = interp1(seg_s, seg_theta, s, 'linear', 'extrap');
if (seg_vdr < 0)
v = v .* -1;
a = a .* -1;
end
end
function [s, v, a, terminal_time] = SolveMinTimeOptimalControlProblem(path_length)
Params = GetVehicleParams();
threshold_s = (Params.v_max^2) / Params.a_max;
dt_for_resampling = 0.1;
if (path_length <= threshold_s)
v_summit = sqrt(path_length * Params.a_max);
terminal_time = 2 * v_summit / Params.a_max;
nfe = round(terminal_time / dt_for_resampling);
time_line = linspace(0, terminal_time, nfe);
time_vec1 = time_line(time_line <= 0.5 * terminal_time);
time_vec2 = time_line(time_line > 0.5 * terminal_time);
a = [ones(1,size(time_vec1,2)).* Params.a_max, ones(1,size(time_vec2,2)).* -Params.a_max];
v_part1 = time_vec1 .* Params.a_max;
v_part2 = v_summit + (time_vec2 - 0.5 * terminal_time).* -Params.a_max;
v = [v_part1, v_part2];
s_part1 = 0.5 * Params.a_max * (time_vec1.^2);
s_part2 = 0.5 * path_length + v_summit * (time_vec2 - 0.5 * terminal_time) + 0.5 * -Params.a_max * ((time_vec2 - 0.5 * terminal_time).^2);
s = [s_part1, s_part2];
else
s_cruise = path_length - threshold_s;
time_cruise = s_cruise / Params.v_max;
time_slope = Params.v_max / Params.a_max;
terminal_time = 2 * time_slope + time_cruise;
nfe = round(terminal_time / dt_for_resampling);
time_line = linspace(0, terminal_time, nfe);
time_vec1 = time_line(time_line <= time_slope);
time_vec3 = time_line(time_line > time_slope + time_cruise);
time_vec1plus2 = time_line(time_line <= time_slope + time_cruise);
time_vec2 = time_vec1plus2(time_vec1plus2 > time_slope);
a = [ones(1,size(time_vec1,2)).* Params.a_max, zeros(1,size(time_vec2,2)), ones(1,size(time_vec3,2)).* Params.a_max];
v_part1 = time_vec1 .* Params.a_max;
v_part2 = ones(1,size(time_vec2,2)) .* Params.v_max;
v_part3 = Params.v_max + (time_vec3 - time_slope - time_cruise).* -Params.a_max;
v = [v_part1, v_part2, v_part3];
s_part1 = 0.5 * Params.a_max * (time_vec1.^2);
s_part2 = 0.5 * Params.a_max * (time_slope^2) + ...
Params.v_max * (time_vec2 - time_slope);
s_part3 = 0.5 * Params.a_max * (time_slope^2) + Params.v_max * time_cruise + ...
Params.v_max * (time_vec3 - time_slope - time_cruise) + ...
0.5 * -Params.a_max * ((time_vec3 - time_slope - time_cruise).^2);
s = [s_part1, s_part2, s_part3];
end
end
function [angles] = ToContinuousAngle(ang)
angles = ang;
for ii = 2 : length(angles)
while(angles(ii) - angles(ii-1) > pi + 0.001)
angles(ii) = angles(ii) - 2 * pi;
end
while(angles(ii) - angles(ii-1) < -pi- 0.001)
angles(ii) = angles(ii) + 2 * pi;
end
end
end