-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
182 lines (149 loc) · 6.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
## CLI for running training
import os
import argparse
parser = argparse.ArgumentParser(prog='train',
description="Train RectAngle model. See list of available arguments for more info.")
parser.add_argument('--train',
'--tr',
metavar='train',
type=str,
action='store',
default='./miccai_us_data/train.h5',
help='Path to training data. Note that for ensemble this should include train + val pre-split.')
parser.add_argument('--val',
'--v',
metavar='val',
type=str,
action='store',
default=None,
help='Path to validation data.')
parser.add_argument('--test',
'--te',
metavar='test',
type=str,
action='store',
default=None,
help='Path to test data.')
parser.add_argument('--label',
'--l',
metavar='label',
type=str,
action='store',
default='random',
help="Label sampling strategy. Should be string of {'random', 'vote', 'mean'}.")
parser.add_argument('--ensemble',
'--en',
metavar='ensemble',
type=str,
action='store',
default=None,
help='Number of ensembled models.')
parser.add_argument('--gate',
'--g',
metavar='gate',
type=str,
action='store',
default=None,
help='(Optional) Attention gating.')
parser.add_argument('--odir',
'--o',
metavar='odir',
type=str,
action='store',
default='./',
help='Path to output folder.')
parser.add_argument('--depth',
'--d',
metavar='depth',
type=str,
action='store',
default='5',
help='Depth of U-Net architecture used.')
parser.add_argument('--epochs',
'--ep',
metavar='epochs',
type=str,
action='store',
default='200',
help='Max number of training epochs per model.')
parser.add_argument('--batch',
'--b',
metavar='batch',
type=str,
action='store',
default='32',
help='Batch size. Note images are large (~400x~300).')
parser.add_argument('--classifier',
'--c',
metavar='classifier',
type=bool,
action='store',
default=True,
help='Use of classifier for pre-screening. If selected will train without and then perform test without + with.')
parser.add_argument('--seed',
'--s',
metavar='seed',
type=str,
action='store',
default=None,
help='Random seed for training.')
args = parser.parse_args()
## convert arguments to useable form
if args.ensemble:
ensemble = int(args.ensemble)
else:
ensemble = None
## run training
import rectangle as rect
import h5py
import torch
import random
import numpy as np
# set seeds for repeatable results
if args.seed:
seed = int(args.seed)
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
f_train = h5py.File(args.train, 'r')
train_data = rect.utils.io.H5DataLoader(f_train, label=args.label)
if torch.cuda.is_available():
device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
else:
device = torch.device('cpu')
if args.val:
f_val = h5py.File(args.val, 'r')
val_data = rect.utils.io.H5DataLoader(f_val, label='vote')
if args.test:
f_test = h5py.File(args.test, 'r')
test_data = rect.utils.io.H5DataLoader(f_test, label='vote')
model = rect.model.networks.UNet(n_layers=int(args.depth), device=device,
gate=args.gate)
trainer = rect.utils.train.Trainer(model, ensemble=ensemble, outdir=args.odir,
nb_epochs=int(args.epochs))
if args.val:
trainer.train(train_data, val_data, train_pre=[rect.utils.transforms.z_score(), rect.utils.transforms.Flip(), rect.utils.transforms.Affine(), rect.utils.transforms.SpeckleNoise()],
val_pre=[rect.utils.transforms.z_score()], train_batch=int(args.batch))
else:
trainer.train(train_data, train_pre=[rect.utils.transforms.z_score(), rect.utils.transforms.Flip(), rect.utils.transforms.Affine(), rect.utils.transforms.SpeckleNoise()],
val_pre=[rect.utils.transforms.z_score()], train_batch=int(args.batch))
if args.test:
trainer.test(test_data, test_pre=[rect.utils.transforms.z_score()],
test_post=[rect.utils.transforms.Binary(), rect.utils.transforms.KeepLargestComponent()])
if args.classifier:
class_train_data = rect.utils.io.ClassifyDataLoader(f_train)
if args.val:
class_val_data = rect.utils.io.ClassifyDataLoader(f_val)
else:
class_val_data = None
class_model = rect.model.networks.MakeDenseNet(freeze_weights=False).to(device)
class_trainer = rect.utils.train.ClassTrainer(class_model, outdir=os.path.join(args.odir, 'classlogs'),
ensemble=None, early_stop=1000)
class_trainer.train(class_train_data, class_val_data, train_batch=int(args.batch))
threshRange = np.linspace(0, 0.6, 20)
if args.test:
for i, thresh in enumerate(threshRange):
test_screen_data = rect.utils.io.PreScreenLoader(class_model.eval(), f_test, label='vote', threshold = thresh)
trainer.test(test_screen_data, test_pre=[rect.utils.transforms.z_score()],
test_post=[rect.utils.transforms.Binary(), rect.utils.transforms.KeepLargestComponent()], oname='class_thresh_{}'.format(i))