-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_vllm.py
178 lines (142 loc) · 5.36 KB
/
run_vllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
from vllm import LLM, SamplingParams
import json, csv
from tqdm import tqdm
from transformers import AutoTokenizer, LlamaForCausalLM
from datasets import load_dataset
import time
from outlines import models, generate
# os.environ['TOKENIZERS_PARALLELISM'] = 'false'
dataset = os.environ['dataset']
model_path = os.environ['model_path']
output_path = os.environ['output_path']
model_name = os.environ['model_name']
icl_name = os.environ['icl_name']
icl_path = os.environ['icl_path']
max_tokens = eval(os.environ['max_tokens'])
if 'min_tokens' in os.environ:
min_tokens = eval(os.environ['min_tokens'])
else:
min_tokens = 0
generator = f'[{model_name}]_[{icl_name}]'
batch_size = eval(os.environ['batch_size'])
output_file_name = os.environ['output_file_name']
gpu_num = len(os.environ['CUDA_VISIBLE_DEVICES'].split(','))
if os.environ['stop']:
stop = eval(os.environ['stop'])
if stop == [""]:
stop = None
else:
stop = None
print('stop符号为:', stop)
if 'use_json' in os.environ:
use_json = eval(os.environ['use_json'])
json_schema = """
{
"type": "object",
"properties": {
"completion_code": {"type": "string"}
}
}
"""
print('use_json', use_json)
# exit()
if icl_name:
prefix = open(os.path.join(icl_path, icl_name+'.txt')).read()
output_file = os.path.join(output_path, f'{output_file_name}.jsonl')
print('output_file', output_file)
tokenizer = AutoTokenizer.from_pretrained(model_path)
print(f'--- finish loading tokenizer: {model_path} ---')
def make_datas(dataset):
datas = []
def add_prompt_column(example, key_name="instruction"):
instruction = example[key_name]
example['prompt'] = prefix.format(query=instruction)
return example
# instruction
if dataset == 'just-eval-instruct':
datas = load_dataset("datas/just-eval-instruct", split="test")
if icl_name: # ICA
datas = datas.map(add_prompt_column).to_list()
else: # chat模型
datas = datas.to_list()
datas = datas[-100:]
# question
if dataset == 'nq':
with open('datas/nq/nq-test.qa.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter='\t')
for row in reader:
assert len(row) == 2
question = row[0].capitalize()
if question[-1] not in '.,?!;:':
question += '?'
answers = eval(row[1])
datas.append({'question': question, 'answer': answers, 'prompt': prefix.format(query=question)})
# prompt
if dataset == 'if-eval':
datas = [json.loads(line) for line in open('datas/instruction_following_eval/input_data.jsonl')]
for i, data in enumerate(datas):
data['instruction'] = data['prompt']
data['prompt'] = prefix.format(query=data['prompt'])
if dataset == 'human-eval':
datas = [json.loads(line) for line in open(f'datas/{dataset}/data.jsonl')]
for i, data in enumerate(datas):
datas[i]['prompt'] = prefix.format(query=data['prompt'])
print('---------example------')
for query_name in ['instruction', 'question', 'input']:
if query_name in datas[0]:
print(f'{query_name}:\n{datas[0][query_name]}')
print('--'*5)
print('Prompt:')
print(datas[0]['prompt'])
return datas
def run(llm, datas, output_file, sampling_params):
for cur_id in tqdm(range(0, len(datas), batch_size)):
batch_datas = datas[cur_id :cur_id + batch_size]
batch_prompts = [data['prompt'] for data in batch_datas]
if 'use_json' in os.environ and use_json:
model_generator = generate.json(llm, json_schema)
batch_outputs = model_generator(batch_prompts, sampling_params=sampling_params)
print(batch_outputs)
exit()
else:
batch_outputs = llm.generate(batch_prompts, sampling_params, use_tqdm=False)
batch_outputs = [o.outputs[0].text for o in batch_outputs]
with open(output_file, 'a') as f:
for i, data in enumerate(batch_datas):
data.update({'output': batch_outputs[i], 'generator': generator})
f.write(json.dumps(data, ensure_ascii=False) + '\n')
if __name__ == '__main__':
datas = make_datas(dataset)
# exit()
print('---finish load data---')
# 跳过已经计算过的结果
if os.path.exists(output_file):
cur_datas = []
for line in open(output_file):
cur_datas.append(json.loads(line))
print(f'已有{len(cur_datas)}个结果,计算剩余的{len(datas)-len(cur_datas)}个。')
datas = datas[len(cur_datas):]
print(f'开始计算{len(datas)}个数据。')
sampling_params = SamplingParams(
temperature=0,
max_tokens=max_tokens,
stop=stop,
include_stop_str_in_output=True,
min_tokens=min_tokens
)
llm = LLM(
model=model_path,
tokenizer=model_path,
gpu_memory_utilization=0.95,
max_num_seqs=1,
tensor_parallel_size=gpu_num,
enforce_eager=True,
trust_remote_code=True
)
if 'use_json' in os.environ and use_json:
llm = models.VLLM(llm)
# llm = None
start = time.time()
run(llm, datas, output_file, sampling_params)
print(f'||||||||||||single exp time: {(time.time() - start)/3600}h')