-
Notifications
You must be signed in to change notification settings - Fork 555
/
ksw.c
749 lines (706 loc) · 26.5 KB
/
ksw.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/* The MIT License
Copyright (c) 2011 by Attractive Chaos <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#if defined __SSE2__
#include <emmintrin.h>
#elif defined __ARM_NEON
#include "neon_sse.h"
#else
#include "scalar_sse.h"
#endif
#include "ksw.h"
#ifdef USE_MALLOC_WRAPPERS
# include "malloc_wrap.h"
#endif
#ifdef __GNUC__
#define LIKELY(x) __builtin_expect((x),1)
#define UNLIKELY(x) __builtin_expect((x),0)
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif
const kswr_t g_defr = { 0, -1, -1, -1, -1, -1, -1 };
struct _kswq_t {
int qlen, slen;
uint8_t shift, mdiff, max, size;
__m128i *qp, *H0, *H1, *E, *Hmax;
};
/**
* Initialize the query data structure
*
* @param size Number of bytes used to store a score; valid valures are 1 or 2
* @param qlen Length of the query sequence
* @param query Query sequence
* @param m Size of the alphabet
* @param mat Scoring matrix in a one-dimension array
*
* @return Query data structure
*/
kswq_t *ksw_qinit(int size, int qlen, const uint8_t *query, int m, const int8_t *mat)
{
kswq_t *q;
int slen, a, tmp, p;
size = size > 1? 2 : 1;
p = 8 * (3 - size); // # values per __m128i
slen = (qlen + p - 1) / p; // segmented length
q = (kswq_t*)malloc(sizeof(kswq_t) + 256 + 16 * slen * (m + 4)); // a single block of memory
q->qp = (__m128i*)(((size_t)q + sizeof(kswq_t) + 15) >> 4 << 4); // align memory
q->H0 = q->qp + slen * m;
q->H1 = q->H0 + slen;
q->E = q->H1 + slen;
q->Hmax = q->E + slen;
q->slen = slen; q->qlen = qlen; q->size = size;
// compute shift
tmp = m * m;
for (a = 0, q->shift = 127, q->mdiff = 0; a < tmp; ++a) { // find the minimum and maximum score
if (mat[a] < (int8_t)q->shift) q->shift = mat[a];
if (mat[a] > (int8_t)q->mdiff) q->mdiff = mat[a];
}
q->max = q->mdiff;
q->shift = 256 - q->shift; // NB: q->shift is uint8_t
q->mdiff += q->shift; // this is the difference between the min and max scores
// An example: p=8, qlen=19, slen=3 and segmentation:
// {{0,3,6,9,12,15,18,-1},{1,4,7,10,13,16,-1,-1},{2,5,8,11,14,17,-1,-1}}
if (size == 1) {
int8_t *t = (int8_t*)q->qp;
for (a = 0; a < m; ++a) {
int i, k, nlen = slen * p;
const int8_t *ma = mat + a * m;
for (i = 0; i < slen; ++i)
for (k = i; k < nlen; k += slen) // p iterations
*t++ = (k >= qlen? 0 : ma[query[k]]) + q->shift;
}
} else {
int16_t *t = (int16_t*)q->qp;
for (a = 0; a < m; ++a) {
int i, k, nlen = slen * p;
const int8_t *ma = mat + a * m;
for (i = 0; i < slen; ++i)
for (k = i; k < nlen; k += slen) // p iterations
*t++ = (k >= qlen? 0 : ma[query[k]]);
}
}
return q;
}
#if defined __ARM_NEON
// This macro implicitly uses each function's `zero` local variable
#define _mm_slli_si128(a, n) (vextq_u8(zero, (a), 16 - (n)))
#endif
kswr_t ksw_u8(kswq_t *q, int tlen, const uint8_t *target, int _o_del, int _e_del, int _o_ins, int _e_ins, int xtra) // the first gap costs -(_o+_e)
{
int slen, i, m_b, n_b, te = -1, gmax = 0, minsc, endsc;
uint64_t *b;
__m128i zero, oe_del, e_del, oe_ins, e_ins, shift, *H0, *H1, *E, *Hmax;
kswr_t r;
#if defined __SSE2__
#define __max_16(ret, xx) do { \
(xx) = _mm_max_epu8((xx), _mm_srli_si128((xx), 8)); \
(xx) = _mm_max_epu8((xx), _mm_srli_si128((xx), 4)); \
(xx) = _mm_max_epu8((xx), _mm_srli_si128((xx), 2)); \
(xx) = _mm_max_epu8((xx), _mm_srli_si128((xx), 1)); \
(ret) = _mm_extract_epi16((xx), 0) & 0x00ff; \
} while (0)
// Given entries with arbitrary values, return whether they are all 0x00
#define allzero_16(xx) (_mm_movemask_epi8(_mm_cmpeq_epi8((xx), zero)) == 0xffff)
#elif defined __ARM_NEON
#define __max_16(ret, xx) (ret) = vmaxvq_u8((xx))
#define allzero_16(xx) (vmaxvq_u8((xx)) == 0)
#else
#define __max_16(ret, xx) (ret) = m128i_max_u8((xx))
#define allzero_16(xx) (m128i_allzero((xx)))
#endif
// initialization
r = g_defr;
minsc = (xtra&KSW_XSUBO)? xtra&0xffff : 0x10000;
endsc = (xtra&KSW_XSTOP)? xtra&0xffff : 0x10000;
m_b = n_b = 0; b = 0;
zero = _mm_set1_epi32(0);
oe_del = _mm_set1_epi8(_o_del + _e_del);
e_del = _mm_set1_epi8(_e_del);
oe_ins = _mm_set1_epi8(_o_ins + _e_ins);
e_ins = _mm_set1_epi8(_e_ins);
shift = _mm_set1_epi8(q->shift);
H0 = q->H0; H1 = q->H1; E = q->E; Hmax = q->Hmax;
slen = q->slen;
for (i = 0; i < slen; ++i) {
_mm_store_si128(E + i, zero);
_mm_store_si128(H0 + i, zero);
_mm_store_si128(Hmax + i, zero);
}
// the core loop
for (i = 0; i < tlen; ++i) {
int j, k, imax;
__m128i e, h, t, f = zero, max = zero, *S = q->qp + target[i] * slen; // s is the 1st score vector
h = _mm_load_si128(H0 + slen - 1); // h={2,5,8,11,14,17,-1,-1} in the above example
h = _mm_slli_si128(h, 1); // h=H(i-1,-1); << instead of >> because x64 is little-endian
for (j = 0; LIKELY(j < slen); ++j) {
/* SW cells are computed in the following order:
* H(i,j) = max{H(i-1,j-1)+S(i,j), E(i,j), F(i,j)}
* E(i+1,j) = max{H(i,j)-q, E(i,j)-r}
* F(i,j+1) = max{H(i,j)-q, F(i,j)-r}
*/
// compute H'(i,j); note that at the beginning, h=H'(i-1,j-1)
h = _mm_adds_epu8(h, _mm_load_si128(S + j));
h = _mm_subs_epu8(h, shift); // h=H'(i-1,j-1)+S(i,j)
e = _mm_load_si128(E + j); // e=E'(i,j)
h = _mm_max_epu8(h, e);
h = _mm_max_epu8(h, f); // h=H'(i,j)
max = _mm_max_epu8(max, h); // set max
_mm_store_si128(H1 + j, h); // save to H'(i,j)
// now compute E'(i+1,j)
e = _mm_subs_epu8(e, e_del); // e=E'(i,j) - e_del
t = _mm_subs_epu8(h, oe_del); // h=H'(i,j) - o_del - e_del
e = _mm_max_epu8(e, t); // e=E'(i+1,j)
_mm_store_si128(E + j, e); // save to E'(i+1,j)
// now compute F'(i,j+1)
f = _mm_subs_epu8(f, e_ins);
t = _mm_subs_epu8(h, oe_ins); // h=H'(i,j) - o_ins - e_ins
f = _mm_max_epu8(f, t);
// get H'(i-1,j) and prepare for the next j
h = _mm_load_si128(H0 + j); // h=H'(i-1,j)
}
// NB: we do not need to set E(i,j) as we disallow adjecent insertion and then deletion
for (k = 0; LIKELY(k < 16); ++k) { // this block mimics SWPS3; NB: H(i,j) updated in the lazy-F loop cannot exceed max
f = _mm_slli_si128(f, 1);
for (j = 0; LIKELY(j < slen); ++j) {
h = _mm_load_si128(H1 + j);
h = _mm_max_epu8(h, f); // h=H'(i,j)
_mm_store_si128(H1 + j, h);
h = _mm_subs_epu8(h, oe_ins);
f = _mm_subs_epu8(f, e_ins);
if (UNLIKELY(allzero_16(_mm_subs_epu8(f, h)))) goto end_loop16;
}
}
end_loop16:
//int k;for (k=0;k<16;++k)printf("%d ", ((uint8_t*)&max)[k]);printf("\n");
__max_16(imax, max); // imax is the maximum number in max
if (imax >= minsc) { // write the b array; this condition adds branching unfornately
if (n_b == 0 || (int32_t)b[n_b-1] + 1 != i) { // then append
if (n_b == m_b) {
m_b = m_b? m_b<<1 : 8;
b = (uint64_t*)realloc(b, 8 * m_b);
}
b[n_b++] = (uint64_t)imax<<32 | i;
} else if ((int)(b[n_b-1]>>32) < imax) b[n_b-1] = (uint64_t)imax<<32 | i; // modify the last
}
if (imax > gmax) {
gmax = imax; te = i; // te is the end position on the target
for (j = 0; LIKELY(j < slen); ++j) // keep the H1 vector
_mm_store_si128(Hmax + j, _mm_load_si128(H1 + j));
if (gmax + q->shift >= 255 || gmax >= endsc) break;
}
S = H1; H1 = H0; H0 = S; // swap H0 and H1
}
r.score = gmax + q->shift < 255? gmax : 255;
r.te = te;
if (r.score != 255) { // get a->qe, the end of query match; find the 2nd best score
int max = -1, tmp, low, high, qlen = slen * 16;
uint8_t *t = (uint8_t*)Hmax;
for (i = 0; i < qlen; ++i, ++t)
if ((int)*t > max) max = *t, r.qe = i / 16 + i % 16 * slen;
else if ((int)*t == max && (tmp = i / 16 + i % 16 * slen) < r.qe) r.qe = tmp;
//printf("%d,%d\n", max, gmax);
if (b) {
i = (r.score + q->max - 1) / q->max;
low = te - i; high = te + i;
for (i = 0; i < n_b; ++i) {
int e = (int32_t)b[i];
if ((e < low || e > high) && (int)(b[i]>>32) > r.score2)
r.score2 = b[i]>>32, r.te2 = e;
}
}
}
free(b);
return r;
}
kswr_t ksw_i16(kswq_t *q, int tlen, const uint8_t *target, int _o_del, int _e_del, int _o_ins, int _e_ins, int xtra) // the first gap costs -(_o+_e)
{
int slen, i, m_b, n_b, te = -1, gmax = 0, minsc, endsc;
uint64_t *b;
__m128i zero, oe_del, e_del, oe_ins, e_ins, *H0, *H1, *E, *Hmax;
kswr_t r;
#if defined __SSE2__
#define __max_8(ret, xx) do { \
(xx) = _mm_max_epi16((xx), _mm_srli_si128((xx), 8)); \
(xx) = _mm_max_epi16((xx), _mm_srli_si128((xx), 4)); \
(xx) = _mm_max_epi16((xx), _mm_srli_si128((xx), 2)); \
(ret) = _mm_extract_epi16((xx), 0); \
} while (0)
// Given entries all either 0x0000 or 0xffff, return whether they are all 0x0000
#define allzero_0f_8(xx) (!_mm_movemask_epi8((xx)))
#elif defined __ARM_NEON
#define __max_8(ret, xx) (ret) = vmaxvq_s16(vreinterpretq_s16_u8((xx)))
#define allzero_0f_8(xx) (vmaxvq_u16(vreinterpretq_u16_u8((xx))) == 0)
#else
#define __max_8(ret, xx) (ret) = m128i_max_s16((xx))
#define allzero_0f_8(xx) (m128i_allzero((xx)))
#endif
// initialization
r = g_defr;
minsc = (xtra&KSW_XSUBO)? xtra&0xffff : 0x10000;
endsc = (xtra&KSW_XSTOP)? xtra&0xffff : 0x10000;
m_b = n_b = 0; b = 0;
zero = _mm_set1_epi32(0);
oe_del = _mm_set1_epi16(_o_del + _e_del);
e_del = _mm_set1_epi16(_e_del);
oe_ins = _mm_set1_epi16(_o_ins + _e_ins);
e_ins = _mm_set1_epi16(_e_ins);
H0 = q->H0; H1 = q->H1; E = q->E; Hmax = q->Hmax;
slen = q->slen;
for (i = 0; i < slen; ++i) {
_mm_store_si128(E + i, zero);
_mm_store_si128(H0 + i, zero);
_mm_store_si128(Hmax + i, zero);
}
// the core loop
for (i = 0; i < tlen; ++i) {
int j, k, imax;
__m128i e, t, h, f = zero, max = zero, *S = q->qp + target[i] * slen; // s is the 1st score vector
h = _mm_load_si128(H0 + slen - 1); // h={2,5,8,11,14,17,-1,-1} in the above example
h = _mm_slli_si128(h, 2);
for (j = 0; LIKELY(j < slen); ++j) {
h = _mm_adds_epi16(h, _mm_load_si128(S++));
e = _mm_load_si128(E + j);
h = _mm_max_epi16(h, e);
h = _mm_max_epi16(h, f);
max = _mm_max_epi16(max, h);
_mm_store_si128(H1 + j, h);
e = _mm_subs_epu16(e, e_del);
t = _mm_subs_epu16(h, oe_del);
e = _mm_max_epi16(e, t);
_mm_store_si128(E + j, e);
f = _mm_subs_epu16(f, e_ins);
t = _mm_subs_epu16(h, oe_ins);
f = _mm_max_epi16(f, t);
h = _mm_load_si128(H0 + j);
}
for (k = 0; LIKELY(k < 16); ++k) {
f = _mm_slli_si128(f, 2);
for (j = 0; LIKELY(j < slen); ++j) {
h = _mm_load_si128(H1 + j);
h = _mm_max_epi16(h, f);
_mm_store_si128(H1 + j, h);
h = _mm_subs_epu16(h, oe_ins);
f = _mm_subs_epu16(f, e_ins);
if(UNLIKELY(allzero_0f_8(_mm_cmpgt_epi16(f, h)))) goto end_loop8;
}
}
end_loop8:
__max_8(imax, max);
if (imax >= minsc) {
if (n_b == 0 || (int32_t)b[n_b-1] + 1 != i) {
if (n_b == m_b) {
m_b = m_b? m_b<<1 : 8;
b = (uint64_t*)realloc(b, 8 * m_b);
}
b[n_b++] = (uint64_t)imax<<32 | i;
} else if ((int)(b[n_b-1]>>32) < imax) b[n_b-1] = (uint64_t)imax<<32 | i; // modify the last
}
if (imax > gmax) {
gmax = imax; te = i;
for (j = 0; LIKELY(j < slen); ++j)
_mm_store_si128(Hmax + j, _mm_load_si128(H1 + j));
if (gmax >= endsc) break;
}
S = H1; H1 = H0; H0 = S;
}
r.score = gmax; r.te = te;
{
int max = -1, tmp, low, high, qlen = slen * 8;
uint16_t *t = (uint16_t*)Hmax;
for (i = 0, r.qe = -1; i < qlen; ++i, ++t)
if ((int)*t > max) max = *t, r.qe = i / 8 + i % 8 * slen;
else if ((int)*t == max && (tmp = i / 8 + i % 8 * slen) < r.qe) r.qe = tmp;
if (b) {
i = (r.score + q->max - 1) / q->max;
low = te - i; high = te + i;
for (i = 0; i < n_b; ++i) {
int e = (int32_t)b[i];
if ((e < low || e > high) && (int)(b[i]>>32) > r.score2)
r.score2 = b[i]>>32, r.te2 = e;
}
}
}
free(b);
return r;
}
static inline void revseq(int l, uint8_t *s)
{
int i, t;
for (i = 0; i < l>>1; ++i)
t = s[i], s[i] = s[l - 1 - i], s[l - 1 - i] = t;
}
kswr_t ksw_align2(int qlen, uint8_t *query, int tlen, uint8_t *target, int m, const int8_t *mat, int o_del, int e_del, int o_ins, int e_ins, int xtra, kswq_t **qry)
{
int size;
kswq_t *q;
kswr_t r, rr;
kswr_t (*func)(kswq_t*, int, const uint8_t*, int, int, int, int, int);
q = (qry && *qry)? *qry : ksw_qinit((xtra&KSW_XBYTE)? 1 : 2, qlen, query, m, mat);
if (qry && *qry == 0) *qry = q;
func = q->size == 2? ksw_i16 : ksw_u8;
size = q->size;
r = func(q, tlen, target, o_del, e_del, o_ins, e_ins, xtra);
if (qry == 0) free(q);
if ((xtra&KSW_XSTART) == 0 || ((xtra&KSW_XSUBO) && r.score < (xtra&0xffff))) return r;
revseq(r.qe + 1, query); revseq(r.te + 1, target); // +1 because qe/te points to the exact end, not the position after the end
q = ksw_qinit(size, r.qe + 1, query, m, mat);
rr = func(q, tlen, target, o_del, e_del, o_ins, e_ins, KSW_XSTOP | r.score);
revseq(r.qe + 1, query); revseq(r.te + 1, target);
free(q);
if (r.score == rr.score)
r.tb = r.te - rr.te, r.qb = r.qe - rr.qe;
return r;
}
kswr_t ksw_align(int qlen, uint8_t *query, int tlen, uint8_t *target, int m, const int8_t *mat, int gapo, int gape, int xtra, kswq_t **qry)
{
return ksw_align2(qlen, query, tlen, target, m, mat, gapo, gape, gapo, gape, xtra, qry);
}
/********************
*** SW extension ***
********************/
typedef struct {
int32_t h, e;
} eh_t;
int ksw_extend2(int qlen, const uint8_t *query, int tlen, const uint8_t *target, int m, const int8_t *mat, int o_del, int e_del, int o_ins, int e_ins, int w, int end_bonus, int zdrop, int h0, int *_qle, int *_tle, int *_gtle, int *_gscore, int *_max_off)
{
eh_t *eh; // score array
int8_t *qp; // query profile
int i, j, k, oe_del = o_del + e_del, oe_ins = o_ins + e_ins, beg, end, max, max_i, max_j, max_ins, max_del, max_ie, gscore, max_off;
assert(h0 > 0);
// allocate memory
qp = malloc(qlen * m);
eh = calloc(qlen + 1, 8);
// generate the query profile
for (k = i = 0; k < m; ++k) {
const int8_t *p = &mat[k * m];
for (j = 0; j < qlen; ++j) qp[i++] = p[query[j]];
}
// fill the first row
eh[0].h = h0; eh[1].h = h0 > oe_ins? h0 - oe_ins : 0;
for (j = 2; j <= qlen && eh[j-1].h > e_ins; ++j)
eh[j].h = eh[j-1].h - e_ins;
// adjust $w if it is too large
k = m * m;
for (i = 0, max = 0; i < k; ++i) // get the max score
max = max > mat[i]? max : mat[i];
max_ins = (int)((double)(qlen * max + end_bonus - o_ins) / e_ins + 1.);
max_ins = max_ins > 1? max_ins : 1;
w = w < max_ins? w : max_ins;
max_del = (int)((double)(qlen * max + end_bonus - o_del) / e_del + 1.);
max_del = max_del > 1? max_del : 1;
w = w < max_del? w : max_del; // TODO: is this necessary?
// DP loop
max = h0, max_i = max_j = -1; max_ie = -1, gscore = -1;
max_off = 0;
beg = 0, end = qlen;
for (i = 0; LIKELY(i < tlen); ++i) {
int t, f = 0, h1, m = 0, mj = -1;
int8_t *q = &qp[target[i] * qlen];
// apply the band and the constraint (if provided)
if (beg < i - w) beg = i - w;
if (end > i + w + 1) end = i + w + 1;
if (end > qlen) end = qlen;
// compute the first column
if (beg == 0) {
h1 = h0 - (o_del + e_del * (i + 1));
if (h1 < 0) h1 = 0;
} else h1 = 0;
for (j = beg; LIKELY(j < end); ++j) {
// At the beginning of the loop: eh[j] = { H(i-1,j-1), E(i,j) }, f = F(i,j) and h1 = H(i,j-1)
// Similar to SSE2-SW, cells are computed in the following order:
// H(i,j) = max{H(i-1,j-1)+S(i,j), E(i,j), F(i,j)}
// E(i+1,j) = max{H(i,j)-gapo, E(i,j)} - gape
// F(i,j+1) = max{H(i,j)-gapo, F(i,j)} - gape
eh_t *p = &eh[j];
int h, M = p->h, e = p->e; // get H(i-1,j-1) and E(i-1,j)
p->h = h1; // set H(i,j-1) for the next row
M = M? M + q[j] : 0;// separating H and M to disallow a cigar like "100M3I3D20M"
h = M > e? M : e; // e and f are guaranteed to be non-negative, so h>=0 even if M<0
h = h > f? h : f;
h1 = h; // save H(i,j) to h1 for the next column
mj = m > h? mj : j; // record the position where max score is achieved
m = m > h? m : h; // m is stored at eh[mj+1]
t = M - oe_del;
t = t > 0? t : 0;
e -= e_del;
e = e > t? e : t; // computed E(i+1,j)
p->e = e; // save E(i+1,j) for the next row
t = M - oe_ins;
t = t > 0? t : 0;
f -= e_ins;
f = f > t? f : t; // computed F(i,j+1)
}
eh[end].h = h1; eh[end].e = 0;
if (j == qlen) {
max_ie = gscore > h1? max_ie : i;
gscore = gscore > h1? gscore : h1;
}
if (m == 0) break;
if (m > max) {
max = m, max_i = i, max_j = mj;
max_off = max_off > abs(mj - i)? max_off : abs(mj - i);
} else if (zdrop > 0) {
if (i - max_i > mj - max_j) {
if (max - m - ((i - max_i) - (mj - max_j)) * e_del > zdrop) break;
} else {
if (max - m - ((mj - max_j) - (i - max_i)) * e_ins > zdrop) break;
}
}
// update beg and end for the next round
for (j = beg; LIKELY(j < end) && eh[j].h == 0 && eh[j].e == 0; ++j);
beg = j;
for (j = end; LIKELY(j >= beg) && eh[j].h == 0 && eh[j].e == 0; --j);
end = j + 2 < qlen? j + 2 : qlen;
//beg = 0; end = qlen; // uncomment this line for debugging
}
free(eh); free(qp);
if (_qle) *_qle = max_j + 1;
if (_tle) *_tle = max_i + 1;
if (_gtle) *_gtle = max_ie + 1;
if (_gscore) *_gscore = gscore;
if (_max_off) *_max_off = max_off;
return max;
}
int ksw_extend(int qlen, const uint8_t *query, int tlen, const uint8_t *target, int m, const int8_t *mat, int gapo, int gape, int w, int end_bonus, int zdrop, int h0, int *qle, int *tle, int *gtle, int *gscore, int *max_off)
{
return ksw_extend2(qlen, query, tlen, target, m, mat, gapo, gape, gapo, gape, w, end_bonus, zdrop, h0, qle, tle, gtle, gscore, max_off);
}
/********************
* Global alignment *
********************/
#define MINUS_INF -0x40000000
static inline uint32_t *push_cigar(int *n_cigar, int *m_cigar, uint32_t *cigar, int op, int len)
{
if (*n_cigar == 0 || op != (cigar[(*n_cigar) - 1]&0xf)) {
if (*n_cigar == *m_cigar) {
*m_cigar = *m_cigar? (*m_cigar)<<1 : 4;
cigar = realloc(cigar, (*m_cigar) << 2);
}
cigar[(*n_cigar)++] = len<<4 | op;
} else cigar[(*n_cigar)-1] += len<<4;
return cigar;
}
int ksw_global2(int qlen, const uint8_t *query, int tlen, const uint8_t *target, int m, const int8_t *mat, int o_del, int e_del, int o_ins, int e_ins, int w, int *n_cigar_, uint32_t **cigar_)
{
eh_t *eh;
int8_t *qp; // query profile
int i, j, k, oe_del = o_del + e_del, oe_ins = o_ins + e_ins, score, n_col;
uint8_t *z; // backtrack matrix; in each cell: f<<4|e<<2|h; in principle, we can halve the memory, but backtrack will be a little more complex
if (n_cigar_) *n_cigar_ = 0;
// allocate memory
n_col = qlen < 2*w+1? qlen : 2*w+1; // maximum #columns of the backtrack matrix
z = n_cigar_ && cigar_? malloc((long)n_col * tlen) : 0;
qp = malloc(qlen * m);
eh = calloc(qlen + 1, 8);
// generate the query profile
for (k = i = 0; k < m; ++k) {
const int8_t *p = &mat[k * m];
for (j = 0; j < qlen; ++j) qp[i++] = p[query[j]];
}
// fill the first row
eh[0].h = 0; eh[0].e = MINUS_INF;
for (j = 1; j <= qlen && j <= w; ++j)
eh[j].h = -(o_ins + e_ins * j), eh[j].e = MINUS_INF;
for (; j <= qlen; ++j) eh[j].h = eh[j].e = MINUS_INF; // everything is -inf outside the band
// DP loop
for (i = 0; LIKELY(i < tlen); ++i) { // target sequence is in the outer loop
int32_t f = MINUS_INF, h1, beg, end, t;
int8_t *q = &qp[target[i] * qlen];
beg = i > w? i - w : 0;
end = i + w + 1 < qlen? i + w + 1 : qlen; // only loop through [beg,end) of the query sequence
h1 = beg == 0? -(o_del + e_del * (i + 1)) : MINUS_INF;
if (n_cigar_ && cigar_) {
uint8_t *zi = &z[(long)i * n_col];
for (j = beg; LIKELY(j < end); ++j) {
// At the beginning of the loop: eh[j] = { H(i-1,j-1), E(i,j) }, f = F(i,j) and h1 = H(i,j-1)
// Cells are computed in the following order:
// M(i,j) = H(i-1,j-1) + S(i,j)
// H(i,j) = max{M(i,j), E(i,j), F(i,j)}
// E(i+1,j) = max{M(i,j)-gapo, E(i,j)} - gape
// F(i,j+1) = max{M(i,j)-gapo, F(i,j)} - gape
// We have to separate M(i,j); otherwise the direction may not be recorded correctly.
// However, a CIGAR like "10M3I3D10M" allowed by local() is disallowed by global().
// Such a CIGAR may occur, in theory, if mismatch_penalty > 2*gap_ext_penalty + 2*gap_open_penalty/k.
// In practice, this should happen very rarely given a reasonable scoring system.
eh_t *p = &eh[j];
int32_t h, m = p->h, e = p->e;
uint8_t d; // direction
p->h = h1;
m += q[j];
d = m >= e? 0 : 1;
h = m >= e? m : e;
d = h >= f? d : 2;
h = h >= f? h : f;
h1 = h;
t = m - oe_del;
e -= e_del;
d |= e > t? 1<<2 : 0;
e = e > t? e : t;
p->e = e;
t = m - oe_ins;
f -= e_ins;
d |= f > t? 2<<4 : 0; // if we want to halve the memory, use one bit only, instead of two
f = f > t? f : t;
zi[j - beg] = d; // z[i,j] keeps h for the current cell and e/f for the next cell
}
} else {
for (j = beg; LIKELY(j < end); ++j) {
eh_t *p = &eh[j];
int32_t h, m = p->h, e = p->e;
p->h = h1;
m += q[j];
h = m >= e? m : e;
h = h >= f? h : f;
h1 = h;
t = m - oe_del;
e -= e_del;
e = e > t? e : t;
p->e = e;
t = m - oe_ins;
f -= e_ins;
f = f > t? f : t;
}
}
eh[end].h = h1; eh[end].e = MINUS_INF;
}
score = eh[qlen].h;
if (n_cigar_ && cigar_) { // backtrack
int n_cigar = 0, m_cigar = 0, which = 0;
uint32_t *cigar = 0, tmp;
i = tlen - 1; k = (i + w + 1 < qlen? i + w + 1 : qlen) - 1; // (i,k) points to the last cell
while (i >= 0 && k >= 0) {
which = z[(long)i * n_col + (k - (i > w? i - w : 0))] >> (which<<1) & 3;
if (which == 0) cigar = push_cigar(&n_cigar, &m_cigar, cigar, 0, 1), --i, --k;
else if (which == 1) cigar = push_cigar(&n_cigar, &m_cigar, cigar, 2, 1), --i;
else cigar = push_cigar(&n_cigar, &m_cigar, cigar, 1, 1), --k;
}
if (i >= 0) cigar = push_cigar(&n_cigar, &m_cigar, cigar, 2, i + 1);
if (k >= 0) cigar = push_cigar(&n_cigar, &m_cigar, cigar, 1, k + 1);
for (i = 0; i < n_cigar>>1; ++i) // reverse CIGAR
tmp = cigar[i], cigar[i] = cigar[n_cigar-1-i], cigar[n_cigar-1-i] = tmp;
*n_cigar_ = n_cigar, *cigar_ = cigar;
}
free(eh); free(qp); free(z);
return score;
}
int ksw_global(int qlen, const uint8_t *query, int tlen, const uint8_t *target, int m, const int8_t *mat, int gapo, int gape, int w, int *n_cigar_, uint32_t **cigar_)
{
return ksw_global2(qlen, query, tlen, target, m, mat, gapo, gape, gapo, gape, w, n_cigar_, cigar_);
}
/*******************************************
* Main function (not compiled by default) *
*******************************************/
#ifdef _KSW_MAIN
#include <unistd.h>
#include <stdio.h>
#include <zlib.h>
#include "kseq.h"
KSEQ_INIT(gzFile, err_gzread)
unsigned char seq_nt4_table[256] = {
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
};
int main(int argc, char *argv[])
{
int c, sa = 1, sb = 3, i, j, k, forward_only = 0, max_rseq = 0;
int8_t mat[25];
int gapo = 5, gape = 2, minsc = 0, xtra = KSW_XSTART;
uint8_t *rseq = 0;
gzFile fpt, fpq;
kseq_t *kst, *ksq;
// parse command line
while ((c = getopt(argc, argv, "a:b:q:r:ft:1")) >= 0) {
switch (c) {
case 'a': sa = atoi(optarg); break;
case 'b': sb = atoi(optarg); break;
case 'q': gapo = atoi(optarg); break;
case 'r': gape = atoi(optarg); break;
case 't': minsc = atoi(optarg); break;
case 'f': forward_only = 1; break;
case '1': xtra |= KSW_XBYTE; break;
}
}
if (optind + 2 > argc) {
fprintf(stderr, "Usage: ksw [-1] [-f] [-a%d] [-b%d] [-q%d] [-r%d] [-t%d] <target.fa> <query.fa>\n", sa, sb, gapo, gape, minsc);
return 1;
}
if (minsc > 0xffff) minsc = 0xffff;
xtra |= KSW_XSUBO | minsc;
// initialize scoring matrix
for (i = k = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
mat[k++] = i == j? sa : -sb;
mat[k++] = 0; // ambiguous base
}
for (j = 0; j < 5; ++j) mat[k++] = 0;
// open file
fpt = xzopen(argv[optind], "r"); kst = kseq_init(fpt);
fpq = xzopen(argv[optind+1], "r"); ksq = kseq_init(fpq);
// all-pair alignment
while (kseq_read(ksq) > 0) {
kswq_t *q[2] = {0, 0};
kswr_t r;
for (i = 0; i < (int)ksq->seq.l; ++i) ksq->seq.s[i] = seq_nt4_table[(int)ksq->seq.s[i]];
if (!forward_only) { // reverse
if ((int)ksq->seq.m > max_rseq) {
max_rseq = ksq->seq.m;
rseq = (uint8_t*)realloc(rseq, max_rseq);
}
for (i = 0, j = ksq->seq.l - 1; i < (int)ksq->seq.l; ++i, --j)
rseq[j] = ksq->seq.s[i] == 4? 4 : 3 - ksq->seq.s[i];
}
gzrewind(fpt); kseq_rewind(kst);
while (kseq_read(kst) > 0) {
for (i = 0; i < (int)kst->seq.l; ++i) kst->seq.s[i] = seq_nt4_table[(int)kst->seq.s[i]];
r = ksw_align(ksq->seq.l, (uint8_t*)ksq->seq.s, kst->seq.l, (uint8_t*)kst->seq.s, 5, mat, gapo, gape, xtra, &q[0]);
if (r.score >= minsc)
err_printf("%s\t%d\t%d\t%s\t%d\t%d\t%d\t%d\t%d\n", kst->name.s, r.tb, r.te+1, ksq->name.s, r.qb, r.qe+1, r.score, r.score2, r.te2);
if (rseq) {
r = ksw_align(ksq->seq.l, rseq, kst->seq.l, (uint8_t*)kst->seq.s, 5, mat, gapo, gape, xtra, &q[1]);
if (r.score >= minsc)
err_printf("%s\t%d\t%d\t%s\t%d\t%d\t%d\t%d\t%d\n", kst->name.s, r.tb, r.te+1, ksq->name.s, (int)ksq->seq.l - r.qb, (int)ksq->seq.l - 1 - r.qe, r.score, r.score2, r.te2);
}
}
free(q[0]); free(q[1]);
}
free(rseq);
kseq_destroy(kst); err_gzclose(fpt);
kseq_destroy(ksq); err_gzclose(fpq);
return 0;
}
#endif