From 9d03ae3ec86680ded6339fb235482577222a93e8 Mon Sep 17 00:00:00 2001 From: D-X-Y <280835372@qq.com> Date: Mon, 25 Jun 2018 01:15:19 -0400 Subject: [PATCH] update utils --- imagenet_train.py | 5 +++-- utils.py | 2 +- 2 files changed, 4 insertions(+), 3 deletions(-) diff --git a/imagenet_train.py b/imagenet_train.py index 5c69bee..0557ce5 100755 --- a/imagenet_train.py +++ b/imagenet_train.py @@ -123,11 +123,11 @@ def main(): start_time = time.time() epoch_time = AverageMeter() for epoch in range(args.start_epoch, args.epochs): - adjust_learning_rate(optimizer, epoch) + lr = adjust_learning_rate(optimizer, epoch) need_hour, need_mins, need_secs = convert_secs2time(epoch_time.val * (args.epochs-epoch)) need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs) - print_log(' [{:s}] :: {:3d}/{:3d} ----- [{:s}] {:s}'.format(args.arch, epoch, args.epochs, time_string(), need_time), log) + print_log(' [{:s}] :: {:3d}/{:3d} ----- [{:s}] {:s} LR={:}'.format(args.arch, epoch, args.epochs, time_string(), need_time, lr), log) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, log) @@ -273,6 +273,7 @@ def adjust_learning_rate(optimizer, epoch): lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr + return lr def accuracy(output, target, topk=(1,)): diff --git a/utils.py b/utils.py index ec6192c..fd7a47a 100644 --- a/utils.py +++ b/utils.py @@ -1,4 +1,4 @@ -import os, sys, time +import os, sys, time, random import numpy as np import matplotlib matplotlib.use('agg')