-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecute.py
38 lines (32 loc) · 1.45 KB
/
execute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import importlib
import sys
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
import os
from datetime import datetime
from src.validate import validate_queries
from src.configuration import PPOConfiguration
def main(config_name, weight_file, k, num_samples):
config_module = importlib.import_module(f'configs.{config_name}')
config_path = os.path.relpath(config_module.__file__, f'{os.getcwd()}/configs')
config = config_module.conf
config.experiment_name = f'executions/{config_path}'
config.query_path = f"queries/generated/JOB_splits_rels4/split{k:02d}/train_queries/"
config.val_query_path = f"queries/generated/JOB_splits_rels4/split{k:02d}/test_queries/"
config.cost_based = False
config.timeout = 60
config.build()
os.makedirs(config.experiment_name, exist_ok=True)
os.system(f'cp configs/{config_path} {config.experiment_name}/config.py')
if isinstance(config, PPOConfiguration):
validate_queries(config, weight_file, num_samples)
else:
exit("Supported algorithm is PPO")
if __name__ == '__main__':
if len(sys.argv) not in [4, 5]:
exit('Usage: python execute.py <name-of-config> <path-to-weight-file> <num-samples> [<k>] (Example: python execute.py basic_config logs/model.pkl 1000)')
config_name = sys.argv[1]
weight_file = sys.argv[2]
num_samples = int(sys.argv[3])
k = int(sys.argv[4]) if len(sys.argv) > 4 else None
main(config_name, weight_file, k, num_samples)