-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrec_eval.py
120 lines (101 loc) · 4.42 KB
/
trec_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import re
import subprocess
import sys
import platform
import pandas as pd
import tempfile
from pyserini.search import get_qrels_file
from pyserini.util import download_evaluation_script
class EvalFunction:
@staticmethod
def trunc(qrels, run):
qrels = get_qrels_file(qrels)
run = pd.read_csv(run, delim_whitespace=True, header=None)
qrels = pd.read_csv(qrels, delim_whitespace=True, header=None)
run[0] = run[0].astype(str)
qrels[0] = qrels[0].astype(str)
qrels = qrels[qrels[0].isin(run[0])]
temp_file = tempfile.NamedTemporaryFile(delete=False).name
qrels.to_csv(temp_file, sep='\t', header=None, index=None)
return temp_file
@staticmethod
def eval(args, trunc=True):
script_path = download_evaluation_script('trec_eval')
cmd_prefix = ['java', '-jar', script_path]
# args = sys.argv
# Option to discard non-judged hits in run file
judged_docs_only = ''
judged_result = []
cutoffs = []
if '-remove-unjudged' in args:
judged_docs_only = args.pop(args.index('-remove-unjudged'))
if any([i.startswith('judged.') for i in args]):
# Find what position the arg is in.
idx = [i.startswith('judged.') for i in args].index(True)
cutoffs = args.pop(idx)
cutoffs = list(map(int, cutoffs[7:].split(',')))
# Get rid of the '-m' before the 'judged.xxx' option
args.pop(idx - 1)
temp_file = ''
if len(args) > 1:
if trunc:
args[-2] = EvalFunction.trunc(args[-2], args[-1])
print('Trunc', args[-2])
if not os.path.exists(args[-2]):
args[-2] = get_qrels_file(args[-2])
if os.path.exists(args[-1]):
# Convert run to trec if it's on msmarco
with open(args[-1]) as f:
first_line = f.readline()
if 'Q0' not in first_line:
temp_file = tempfile.NamedTemporaryFile(delete=False).name
print('msmarco run detected. Converting to trec...')
run = pd.read_csv(args[-1], delim_whitespace=True, header=None,
names=['query_id', 'doc_id', 'rank'])
run['score'] = 1 / run['rank']
run.insert(1, 'Q0', 'Q0')
run['name'] = 'TEMPRUN'
run.to_csv(temp_file, sep='\t', header=None, index=None)
args[-1] = temp_file
run = pd.read_csv(args[-1], delim_whitespace=True, header=None)
qrels = pd.read_csv(args[-2], delim_whitespace=True, header=None)
# cast doc_id column as string
run[0] = run[0].astype(str)
qrels[0] = qrels[0].astype(str)
# Discard non-judged hits
if judged_docs_only:
if not temp_file:
temp_file = tempfile.NamedTemporaryFile(delete=False).name
judged_indexes = pd.merge(run[[0, 2]].reset_index(), qrels[[0, 2]], on=[0, 2])['index']
run = run.loc[judged_indexes]
run.to_csv(temp_file, sep='\t', header=None, index=None)
args[-1] = temp_file
# Measure judged@cutoffs
for cutoff in cutoffs:
run_cutoff = run.groupby(0).head(cutoff)
judged = len(pd.merge(run_cutoff[[0, 2]], qrels[[0, 2]], on=[0, 2])) / len(run_cutoff)
metric_name = f'judged_{cutoff}'
judged_result.append(f'{metric_name:22}\tall\t{judged:.4f}')
cmd = cmd_prefix + args[1:]
else:
cmd = cmd_prefix
print(f'Running command: {cmd}')
shell = platform.system() == "Windows"
process = subprocess.Popen(cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=shell)
stdout, stderr = process.communicate()
if stderr:
print(stderr.decode("utf-8"))
print('Results:')
print(stdout.decode("utf-8").rstrip())
for judged in judged_result:
print(judged)
if temp_file:
os.remove(temp_file)
match = re.search(r'\d\.\d+', stdout.decode("utf-8").rstrip())
if match:
result = match.group(0)
return float(result)