English | 简体中文
This directory provides examples that infer_xxx.py
fast finishes the deployment of AdaFace on CPU/GPU and GPU accelerated by TensorRT.
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
Taking AdaFace as an example, we demonstrate how infer.py
fast finishes the deployment of AdaFace on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/faceid/adaface/python/
# Download AdaFace model files and test images
# Download test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
unzip face_demo.zip
# Run the following code if the model is in Paddle format
wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz
tar zxvf mobilefacenet_adaface.tgz -C ./
# CPU inference
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device cpu
# GPU inference
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device gpu
# TensorRT inference on GPU
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device gpu \
--use_trt True
# KunlunXin XPU inference
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
--face test_lite_focal_arcface_0.JPG \
--face_positive test_lite_focal_arcface_1.JPG \
--face_negative test_lite_focal_arcface_2.JPG \
--device kunlunxin
The visualized result after running is as follows
FaceRecognitionResult: [Dim(512), Min(-0.133213), Max(0.148838), Mean(0.000293)]
FaceRecognitionResult: [Dim(512), Min(-0.102777), Max(0.120130), Mean(0.000615)]
FaceRecognitionResult: [Dim(512), Min(-0.116685), Max(0.142919), Mean(0.001595)]
Cosine 01: 0.7483505506964364
Cosine 02: -0.09605773855893639
fastdeploy.vision.faceid.AdaFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.PADDLE)
AdaFace model loading and initialization, among which model_file is the exported ONNX model format or PADDLE static graph format
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path. No need to set when the model is in ONNX format
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. Paddle format by default
AdaFace.predict(image_data)Model prediction interface. Input images and output detection results.
Parameter
- image_data(np.ndarray): Input data in HWC or BGR format
Return
Return
fastdeploy.vision.FaceRecognitionResult
structure. Refer to Vision Model Prediction Results for its description.
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
The member variables of AdaFacePreprocessor are as follows
- size(list[int]): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [112, 112]
- alpha(list[float]): Preprocess normalized alpha, and calculated as
x'=x*alpha+beta
. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]- beta(list[float]): Preprocess normalized alpha, and calculated as
x'=x*alpha+beta
. beta defaults to [-1.f, -1.f, -1.f]- swap_rb(bool): Whether to convert BGR to RGB in pre-processing. Default true
The member variables of AdaFacePostprocessor are as follows
- l2_normalize(bool): Whether to perform l2 normalization before outputting the face vector. Default false.