English | 简体中文
This directory provides examples that infer_xxx.c
fast finishes the deployment of PaddleDetection models, including PPYOLOE on CPU/GPU.
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Download the precompiled deployment library and samples code according to your development environment. Refer to FastDeploy Precompiled Library
Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
ppyoloe is taken as an example for inference deployment
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download the PPYOLOE model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# CPU inference
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
# GPU inference
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
Create a RuntimeOption object, and return a pointer to manipulate it.
Return
- fd_c_runtime_option_wrapper(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
void FD_C_RuntimeOptionWrapperUseCpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
Enable Cpu inference.
Params
- fd_c_runtime_option_wrapper(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
void FD_C_RuntimeOptionWrapperUseGpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
int gpu_id)
Enable Gpu inference.
Params
- fd_c_runtime_option_wrapper(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
- gpu_id(int): gpu id
FD_C_PPYOLOEWrapper* FD_C_CreatePPYOLOEWrapper(
const char* model_file, const char* params_file, const char* config_file,
FD_C_RuntimeOptionWrapper* runtime_option,
const FD_C_ModelFormat model_format)
Create a PPYOLOE model object, and return a pointer to manipulate it.
Params
- model_file(const char*): Model file path
- params_file(const char*): Parameter file path
- config_file(const char*): Configuration file path, which is the deployment yaml file exported by PaddleDetection
- runtime_option(FD_C_RuntimeOptionWrapper*): Backend inference configuration. None by default, which is the default configuration
- model_format(FD_C_ModelFormat): Model format. FD_C_ModelFormat_PADDLE format by default
Return
- fd_c_ppyoloe_wrapper(FD_C_PPYOLOEWrapper*): Pointer to manipulate PPYOLOE object.
FD_C_Mat FD_C_Imread(const char* imgpath)
Read an image, and return a pointer to cv::Mat.
Params
- imgpath(const char*): image path
Return
- imgmat(FD_C_Mat): pointer to cv::Mat object which holds the image.
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
Write image to a file.
Params
- savepath(const char*): save path
- img(FD_C_Mat): pointer to cv::Mat object
Return
- result(FD_C_Bool): bool to indicate success or failure
FD_C_Bool FD_C_PPYOLOEWrapperPredict(
__fd_take FD_C_PPYOLOEWrapper* fd_c_ppyoloe_wrapper, FD_C_Mat img,
FD_C_DetectionResult* fd_c_detection_result)
Predict an image, and generate detection result.
Params
- fd_c_ppyoloe_wrapper(FD_C_PPYOLOEWrapper*): pointer to manipulate PPYOLOE object
- img(FD_C_Mat): pointer to cv::Mat object, which can be obained by FD_C_Imread interface
- fd_c_detection_resultFD_C_DetectionResult*): Detection result, including detection box and confidence of each box. Refer to Vision Model Prediction Result for DetectionResult
FD_C_Mat FD_C_VisDetection(FD_C_Mat im, FD_C_DetectionResult* fd_detection_result,
float score_threshold, int line_size, float font_size);
Visualize detection results and return visualization image.
Params
- im(FD_C_Mat): pointer to input image
- fd_detection_result(FD_C_DetectionResult*): pointer to C DetectionResult structure
- score_threshold(float): score threshold
- line_size(int): line size
- font_size(float): font size
Return
- vis_im(FD_C_Mat): pointer to visualization image.