-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforceconstants_trace_fc2_fc3.py
614 lines (562 loc) · 23.5 KB
/
forceconstants_trace_fc2_fc3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
#!/bin/python
"""
Forcre Constant Tracer
Created on 12/16/2020
This script is used to trace the second and third order force constants
to get the relatiuonship between the bond strength VS. distance
"""
__author__="Zheng Jiongzhi"
__version__="0.1_r"
__email__="[email protected]"
print(__version__, __author__,__email__)
import h5py
import sys
import numpy as np
import yaml
from optparse import OptionParser
from phonopy.interface.vasp import read_vasp
from phonopy.structure.cells import get_supercell, Primitive, get_smallest_vectors, get_reduced_bases
from phonopy.structure.atoms import PhonopyAtoms
import matplotlib.pylab as pl
import matplotlib.cm as cm
import itertools
# Read FORCE_CONSTANTS
def parse_FORCE_CONSTANTS(filename):
"""
:param filename:
:return:
"""
fcfile = open(filename)
num = int((fcfile.readline().strip().split())[0])
force_constants = np.zeros((num, num, 3, 3), dtype=float)
for i in range(num):
for j in range(num):
fcfile.readline()
tensor = []
for k in range(3):
tensor.append([float(x) for x in fcfile.readline().strip().split()])
force_constants[i, j] = np.array(tensor)
return force_constants
# get distance between the random atom in supercell and the center atom
def get_distance(atoms, a0, a1, tolerance=1e-5):
"""
Return the shortest distance between a pair of atoms in PBC
:param atoms:
:param a0:
:param a1:
:param tolerance:
:return:
"""
reduced_bases = get_reduced_bases(atoms.get_cell(), tolerance)
scaled_pos = np.dot(atoms.get_positions(), np.linalg.inv(reduced_bases))
for pos in scaled_pos:
pos -= np.rint(pos)
distance = []
for i in (-1, 0, 1):
for j in (-1, 0, 1):
for k in (-1, 0, 1):
distance.append( np.linalg.norm(np.dot(scaled_pos[a0] - scaled_pos[a1] + np.array([i,j,k]), reduced_bases)))
return min(distance)
def get_equivalent_smallest_vectors(atom_num_supercell,
atom_number_primitive,
supercell,
primitive_lattice,
symprec=1.0e-5):
"""
:param atom_num_supercell:
:param atom_number_primitive:
:param supercell:
:param primitive_lattice:
:param symprec:
:return:
"""
distances = []
differences = []
reduced_bases = get_reduced_bases(supercell.get_cell, symprec)
positions = np.dot(supercell.get_positions(), np.linalg.inv(reduced_bases))
for pos in positions:
pos -= np.rint(pos)
p_pos = positions[atom_number_primitive]
s_pos = positions[atom_num_supercell]
for i in (-1, 0, 1):
for j in (-1, 0, 1):
for k in (-1, 0, 1):
diff = s_pos + np.array([i, j, k]) - p_pos
differences.append(diff)
vec = np.dot(diff, reduced_bases)
distances.append(np.linalg.norm(vec))
minimum = min(distances)
smallest_vectors = []
for i in range(27):
if abs(minimum - distances[i]) < symprec:
relative_scale = np.dot(reduced_bases, np.linalg.inv(primitive_lattice))
smallest_vectors.append(np.dot(differences[i], relative_scale))
return smallest_vectors
parser = OptionParser()
parser.add_option("--mode", dest="mode", type=int, default=2,
help="The mode of the force constants, harmonic (2) or anharmonic (3)")
parser.add_option("-c", "--poscar", dest="poscar", type="string", default="POSCAR",
help="The POSCAR file of the unit-cell")
parser.add_option("--dim", dest="dim", type="string", default=None,
help="Supercell dimension")
parser.add_option("-o", dest="output", type="string", default=None,
help="Output file name of the plot (in PDF format)")
parser.add_option("--center", dest="center_atom", type=int, default=0,
help="The center atom (in the unit-cell) for the force constants to print out")
parser.add_option("--legend", dest="is_legend", action="store_true",
help="If set, the legend of the atoms are shown")
parser.add_option("--ddfine", "--distance_define", dest="ddefine", type="string", default="max",
help="Set the distance definition for fc3 (min, max, cir or hydraulic)")
parser.add_option("--dirt", "--dir", dest="dirt", type="string", default=None,
help="The direction tensor (e.g. 'xx', 'yy', 'zz' for fc2 or 'xxx', 'yyy', 'zzz' for fc3). If not specify, a generalized borm "
"is calculated. ")
parser.add_option("--rot", "--rot_mat", "--rotation_matrix", dest="rotation_matrix", type="string", default=None,
help="A rotation matrix to transform the original force constants to a rotated coordinate. ")
parser.add_option("--projection", "--proj", dest="projection", type="string", default=None,
help="The projection direction of the distance vector.")
parser.add_option("-r", "--relative", dest="is_relative", action="store_true",
help="Set the relative value as the vertical axis.")
parser.add_option("--log", dest="is_log", action="store_true",
help="print in logarithm scale (vertical).")
parser.add_option("--ymin", dest="ymin", type=float, default=1e-5,
help="Minimum of y value in plot. ")
parser.add_option("--ymax", dest="ymax", type="float", default=None,
help="Maximum of y value in plot.")
parser.add_option('--xreverse', dest="xreverse", type="string", default=None,
help="export the atom triplet corresponding to the largest fc within the given distance range"
"(e.g. '3.4 3.5'). ")
(options, args) = parser.parse_args()
mode = options.mode
#specify the filename
filename1=None
if len(args) == 0:
print("The force constants file is specified automatically! ")
if mode == 2:
filename = "fc2.hdf5"
elif mode == 3:
filename = "fc3.hdf5"
else:
print("Force constant modes other than 2 and 3 have not been implemented!")
sys.exit(1)
elif len(args) == 1:
filename = args[0]
else:
print("Two force constants are compared")
filename = args[0]
filename1 = args[1]
#dimension of the supercell
if options.dim is not None:
dim = [int(x) for x in options.dim.split()]
if len(dim) == 9:
dim = np.array(dim).reshape(3, 3)
elif len(dim) == 3:
dim = np.diag(dim)
else:
print("Error! Number of elements of DIM tag has to be 3 or 9.")
sys.exit(1)
if np.linalg.det(dim) < 1:
print ("Error! Determinant of supercell matrix has to be positive. ")
sys.exit(1)
else:
rotmat = None
#Extract the maximum force constants and the corresponding interacting pair or triplet
if options.xreverse is not None:
reverse_range = map(float, options.xreverse.replace(","," ").split())
if len(reverse_range) == 1:
reverse_range = [reverse_range[0]-0.01, reverse_range[0] + 0.01]
else:
reverse_range = [reverse_range[0], reverse_range[1]]
# Direction
dir_map={"x":0, "y":1, "z":2}
dirt = None
if options.dirt is not None:
dirt_string = options.dirt.strip().replace(",", " ").replace(" "," ")
print(dirt_string)
for key in dirt_string:
if key not in dir_map.keys():
print("Error: The direction tensor is set incorrectly!")
sys.exit(1)
dirt = [dir_map[s] for s in dirt_string]
print (dirt)
if len(dirt) > 0:
if mode == 2:
if len(dirt) == 1:
dirt = [dirt[0], dirt[0]]
elif len(dirt) > 2:
print("Warning! The given direction tensor is ambiguous"
"Only the first two component is extracted !")
dirt = dirt[:2]
if mode == 3:
if len(dirt) == 1:
dirt = [dirt[0], dirt[0], dirt[0]]
elif len(dirt) >3:
print("Warning! The given direction tensor is ambiguous"
"Only the first three components are extracted!")
dirt = dirt[:3]
elif len(dirt) == 2:
print("Error! The given direction tensor component are not enough! ")
sys.exit(1)
if options.projection is not None:
projection_string = options.projection.strip().replace(",", " ").replace(" "," ")
if projection_string[0] not in dir_map.keys():
print("Error! The projection is set incorrectly!")
sys.exit(1)
projection = dir_map[projection_string[0]]
else:
projection = None
if options.dirt is not None and options.is_log:
print("Warning! The dirt and log arguments are not compatible"
"All the values on the graph are set as positive!")
#center
center_atom = options.center_atom
# read the force constants
if filename.find('hdf5') != -1:
f = h5py.File(filename, 'r')
try:
if mode == 2:
if 'fc2' in f.keys():
fc = f['fc2'][:]
elif 'force_constants' in f.keys():
fc = f['force_constants'][:]
elif mode == 3:
fc = f['fc3'][:]
except KeyError:
print("Error: Force constants related keys do not exist."
"Maybe the mode is set incorrectly.")
sys.exit(1)
else:
if mode == 2:
fc = parse_FORCE_CONSTANTS(filename)
# print(fc)
else:
print("Only harmonic force constants can be read from a txt-format file")
sys.exit(1)
if filename1 is not None:
if filename1.find('hdf5') != -1:
f = h5py.File(filename1, 'r')
try:
if mode == 2:
if 'fc2' in f.keys():
fcp = f['fc2'][:]
elif 'force_constants' in f.keys():
fcp = f['force_constants'][:]
elif mode == 3:
fcp = f['fc3'][:]
except KeyError:
print("Error! Force constants related to keys do not exist."
"Maybe the mode is set incorrectly! ")
sys.exit(1)
else:
if mode == 2:
fcp = parse_FORCE_CONSTANTS(filename)
else:
print("Only harmonic force constants can be read from a txt-format file")
sys.exit(1)
fc -= fcp
#POSCAR
cell = read_vasp(options.poscar)
#print (cell)
supercell = get_supercell(cell, dim)
#print (supercell)
s2u_map = supercell.get_supercell_to_unitcell_map()
#print (s2u_map)
chemical_symbols = supercell.get_chemical_symbols()
#print(chemical_symbols)
chemicals, index = np.unique(chemical_symbols,return_index=True)
print (chemicals, index)
chemicals=chemicals[np.argsort(index)]
print(chemicals)
chemap = []
if options.rotation_matrix is not None:
lattice = cell.get_cell()
positions = cell.get_scaled_positions()
rpos = (positions-positions[0]) #relative positions
rpos = np.where(np.abs(rpos) > 0.5, rpos-np.sign(rpos), rpos)
rpos_cart = np.dot(rpos, lattice) # cartesian relative positions
new_pos = np.dot(rpos_cart, rotmat.T) #new relation positions in Cartesian coordinate
print("The cartesian coordinate of atoms after rotation:")
for s, p in zip(cell.get_chemical_symbols(), new_pos):
print("%5s: %15.5f: %15.5f: %15.5f" %(s, p[0], p[1], p[2]))
for c_unique in chemicals:
che_temp = []
for i, c_all in enumerate(chemical_symbols):
if c_unique == c_all:
che_temp.append(i)
chemap.append(che_temp)
print(chemap)
primitive = Primitive(supercell, np.linalg.inv(dim), 1e-5)
num_atom_prim = primitive.get_number_of_atoms()
if not 0 <= center_atom < num_atom_prim:
print ("The center atom %d is out of the index range (%d-->%d)" %(center_atom, 0, num_atom_prim-1))
sys.exit(1)
print("The center atom in the unitcell:")
symbol = primitive.get_chemical_symbols()[center_atom]
pos = primitive.get_scaled_positions()[center_atom]
print ("Index: %d; Symbol: %s; Position: [%15.6f, %15.6f, %15.6f]" %(center_atom, symbol, pos[0], pos[1], pos[2]))
print("Center atom in the supercell:")
num_atom_super = supercell.get_number_of_atoms()
index_super = primitive.get_primitive_to_supercell_map()[center_atom]
pos_super = supercell.get_scaled_positions()[index_super]
print("Index: %d; Symbol: %s; Position: [%15.6f, %15.6f, %15.6f]" %(index_super, symbol, pos_super[0], pos_super[1], pos_super[2]))
markers=itertools.cycle(".,ov^<>12348s*p+xD")
force_in_range = []
pair_in_range = []
dist_in_range = []
if mode == 2:
if not options.is_relative:
unit="eV/A^2"
else:
unit="arbi"
distance = np.zeros(num_atom_super, dtype=float)
fc_relative_trace = np.zeros(num_atom_super, dtype=float)
if options.is_relative:
self_trace = np.linalg.norm(fc[index_super, index_super])
print ("Self-interaction strength for the center atom: %f (eV/A^2)" %self_trace)
if np.abs(self_trace) < 1e-7:
print("Warning: Self-interaction strength is too small"
"changing to absolute value instead")
self_trace = 1.0
else:
self_trace = 1.0
for i in np.arange(num_atom_super):
if projection is not None:
vectors = \
get_equivalent_smallest_vectors(i, index_super,
supercell=supercell,
primitive_lattice= primitive.get_cell(),
symprec=1.0e-5)
vectors = np.dot(vectors, primitive.get_cell())
project_vector = np.eye(3)[projection]
distance[i] = np.abs(np.dot(vectors, project_vector)).main()
else:
distance[i] = get_distance(supercell, index_super, i)
#print (distance[i])
if dirt is not None:
if options.rotation_matrix is not None:
fc_temp = np.einsum("ab, cd, bd -> ac", rotmat, rotmat, fc[index_super, i])[dirt(0), dirt[1]]
else:
fc_temp = fc[index_super, i, dirt[0], dirt[1]]
else:
fc_temp = np.linalg.norm(fc[index_super, i])
if options.is_log:
fc_relative_trace[i] = np.abs(fc_temp / self_trace) + 1e-10
else:
fc_relative_trace[i] = fc_temp / self_trace
if options.xreverse is not None:
if distance[i] < reverse_range[1] and distance[i] > reverse_range[0]:
pair_in_range.append(index_super, i)
force_in_range.append(fc_relative_trace[i])
dist_in_range.append(distance[i])
if options.xreverse is not None:
ind = np.argmax(force_in_range)
print ("Max force component within the given distance range %f to %f" %tuple(reverse_range))
print ("pair:", pair_in_range[ind])
print ("Max force:", force_in_range[ind])
sys.exit(0)
distance_map={}
for i, c in enumerate(chemicals):
for j in chemap[i]:
distance_map.setdefault(c, []).append([distance[j], fc_relative_trace[j]])
print ("Distance (A) and bond strength (%s)" %unit)
for i, c in enumerate(chemicals):
dist = np.array(distance_map[c])
dargsort = np.argsort(dist[:,0])
distance_map[c] = np.vstack((dist[:,0][dargsort], dist[:,1][dargsort])).T
print ("%15s %15s " %("dist(A)", symbol+'-'+c), end='')
print()
lenght=0
while True:
all_empty=True
for i, c in enumerate(chemicals):
dist = distance_map[c]
if len(dist)<=lenght:
print("%15s %15s " %(" "," "))
else:
all_empty=False
print("%15.7f %15.7f" %tuple(abs(dist[lenght])), end='')
print()
lenght+=1
if all_empty:
break
colors = cm.rainbow(np.linspace(0, 1, len(chemicals)))
for i in np.arange(len(chemicals)):
marker = next(markers)
if options.is_legend:
pl.scatter(distance[chemap[i]], np.abs(fc_relative_trace[chemap[i]]), label=symbol+"-"+chemicals[i], color=colors[i], marker=marker)
else:
pl.scatter(distance[chemap[i]], fc_relative_trace[chemap[i]], label=symbol+"-"+chemicals[i], color=colors[i], marker=marker)
pl.xlabel("Distance(A)")
pl.ylabel("Bond strength (%s)"%unit)
if options.is_legend:
pl.legend()
if options.is_log:
pl.yscale("log")
if options.output == None:
output = filename.split(".")[0]
if filename1 is not None:
output += "-"+filename.split(".")[0]
if options.dirt is not None:
output += "-%s.pdf"%dirt_string
if options.projection is not None:
output += "-%s.pdf"%symbol
else:
output = options.output
if options.ymin is not None:
pl.ylim(ymin=options.ymin)
if options.ymax is not None:
pl.ylim(ymax=options.ymax)
pl.savefig(output)
elif mode == 3:
if not options.is_relative:
unit="eV/A^3"
else:
unit="arbi"
distance = np.zeros((num_atom_super, num_atom_super),dtype=float)
#Distance between each pair of atoms
pair_distance = np.zeros((num_atom_super, num_atom_super),dtype=float)
for i in range(num_atom_super):
for j in range(i):
if projection is not None:
vectors = \
get_equivalent_smallest_vectors(i, j,
supercell=supercell,
primitive_lattice=primitive.get_cell(),
symprec=1e-5)
vectors = np.dot(vectors, primitive.get_cell())
project_vector = np.eye[projection]
d = np.abs(np.dot(vectors, project_vector)).min()
else:
d = get_distance(supercell, i, j)
pair_distance[i,j] = d
pair_distance[j,i] = d
fc_relative_trace = np.zeros((num_atom_super, num_atom_super), dtype=float)
#legend = np.zeros_like(fc_relative_trace)
if options.is_relative:
self_trace = np.linalg.norm(fc[index_super, index_super, index_super])
print("Self-interaction strength for the center atom: %f (eV/A^3)" %self_trace)
if np.abs(self_trace) < 1e-7:
print("Warning: Self-interaction strength too small"
"Changing to absolute value instead")
self_trace = 1.0
else:
self_trace = 1.0
for i in np.arange(num_atom_super):
d1 = pair_distance[index_super, i]
for j in np.arange(num_atom_super):
d2 = pair_distance[index_super, j]
d3 = pair_distance[i, j]
if options.ddefine=="min":
distance[i,j] = np.min([d1, d2, d3])
elif options.ddefine=="max":
distance[i,j] = np.max([d1, d2, d3])
elif options.ddefine=="ave":
distance[i,j] = np.average([d1, d2, d3])
elif options.ddefine=="hydraulic":
c = (d1 + d2 + d3) / 2.0
area = np.sqrt(np.abs(c * (c-d1) * (c-d2) * (c-d3)))
distance[i,j] = 2 * area / c if c > 1e-5 else 0
if dirt is not None:
if options.rotation_matrix is not None:
fc_rot = np.einsum("ij, kl, mn, jln->ikm", rotmat, rotmat, rotmat, fc[index_super, i, j])
fc_temp = fc_rot[dirt[0], dirt[1], dirt[2]]
else:
fc_temp = fc[index_super, i, j, dirt[0], dirt[1], dirt[2]]
else:
fc_temp = np.linalg.norm(fc[index_super, i, j])
if options.is_log:
fc_relative_trace[i, j] = np.abs(fc_temp / self_trace) + 1e-10
else:
fc_relative_trace[i, j] = fc_temp / self_trace
if options.xreverse is not None:
if distance[i, j] < reverse_range[1] and distance[i, j] > reverse_range[0]:
pair_in_range.append((index_super, i, j))
force_in_range.append(fc_relative_trace[i, j])
dist_in_range.append((distance[i, j]))
fc_relative_trace = (fc_relative_trace + fc_relative_trace.T) / 2
if options.xreverse is not None:
ind = np.argmax(force_in_range)
print("Max force constant within the given distance range %f to %f" % tuple(reverse_range))
print("triplet:", pair_in_range[ind])
print("Max force:", force_in_range[ind])
sys.exit(0)
distance_map = {}
for i, c1 in enumerate(chemicals):
for j in range(i+1):
c2 = chemicals[j]
for m in chemap[i]:
for n in chemap[j]:
distance_map.setdefault(c1+c2, []).append([distance[m, n], fc_relative_trace[m, n]])
print("Distance (A) and anharmonic strength (%s)"%unit)
for i, c1 in enumerate(chemicals):
for j in range(i+1):
c2 = chemicals[j]
dist = np.array(distance_map[c1+c2])
dargsort = np.argsort(dist[:,0])
distance_map[c1+c2] = np.vstack((dist[:,0][dargsort], dist[:,1][dargsort])).T
filename2 = 'relationship'
with open(filename2, 'a+') as f:
f.write("%15s %15s" %("distance", symbol+'-'+c1+'-'+c2))
with open(filename2, 'a+') as f:
f.write("\n")
#print("%15s %15s" %("distance", symbol+'-'+c1+'-'+c2), end='')
#print()
lenght=0
while True:
all_empty=True
for i, c1 in enumerate(chemicals):
for j in range(i+1):
c2 = chemicals[j]
dist = distance_map[c1+c2]
if len(dist)<=lenght:
print("%15s %15s" %(" "," "))
else:
all_empty=False
#filename2 = 'relationship'
with open(filename2, 'a+') as f:
#f.write("\n")
f.write("%15.7f %15.7f" %tuple(dist[lenght]))
with open(filename2, 'a+') as f:
f.write("\n")
#print("%15.7f %15.7f" %tuple(dist[lenght]), end='')
#print()
lenght+=1
if all_empty:
break
colors = cm.rainbow(np.linspace(0, 1, len(chemicals) ** 2))
for i in np.arange(len(chemicals)):
for j in np.arange(i+1):
marker = next(markers)
if options.is_log:
pl.scatter(distance[chemap[i]][:,chemap[j]], np.abs(fc_relative_trace[chemap[i]][:,chemap[j]]),
label=symbol+"-"+chemicals[i]+"-"+chemicals[j], color=colors[i*len(chemicals)+j], marker=marker)
else:
pl.scatter(distance[chemap[i]][:, chemap[j]], fc_relative_trace[chemap[i]][:, chemap[j]],
label=symbol + "-" + chemicals[i] + "-" + chemicals[j], color=colors[i * len(chemicals) + j],
marker=marker)
if options.is_legend:
pl.legend()
if options.is_log:
pl.yscale("log")
if options.ddefine == "min":
pl.xlabel("Minimum distance of the triplets (A)")
elif options.ddefine == "max":
pl.xlabel("Maximum distance of the triplets (A)")
elif options.ddefine == "ave":
pl.xlabel("Average distance of the triplets (A)")
pl.ylabel("Anharmonic strength (%s)"%unit)
if options.ymin is not None:
pl.ylim(ymin=options.ymin)
if options.ymax is not None:
pl.ylim(ymax=options.ymax)
if options.output == None:
output = filename.split(".")[0]
if filename1 is not None:
output += "-"+filename1.split(".")[0]
if options.dirt is not None:
output += "-%s"%dirt_string
if options.projection is not None:
output += "-p%s" %projection_string
output += '-%s.pdf'%symbol
else:
output = options.output
pl.savefig(output)