-
Notifications
You must be signed in to change notification settings - Fork 68
/
atm_lesgo_interface.f90
1217 lines (971 loc) · 45.2 KB
/
atm_lesgo_interface.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! Written by:
!!
!! Luis 'Tony' Martinez <[email protected]> (Johns Hopkins University)
!!
!! Copyright (C) 2012-2013, Johns Hopkins University
!!
!! This file is part of The Actuator Turbine Model Library.
!!
!! The Actuator Turbine Model is free software: you can redistribute it
!! and/or modify it under the terms of the GNU General Public License as
!! published by the Free Software Foundation, either version 3 of the
!! License, or (at your option) any later version.
!!
!! The Actuator Turbine Model is distributed in the hope that it will be
!! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with Foobar. If not, see <http://www.gnu.org/licenses/>.
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!*******************************************************************************
module atm_lesgo_interface
!*******************************************************************************
! This module interfaces actuator turbine module with lesgo
! It is a lesgo specific module, unlike the atm module
! The MPI management is done only in this section of the code
! This is very code dependent and will have to be modified according to
! the code being used. In this case LESGO has its own MPI details
! Look into mpi_defs.f90 for the details
! Remember to always dimensinoalize the variables from LESGO
! Length is non-dimensionalized by z_i
! Lesgo data used regarding the grid (LESGO)
use param, only : dt ,nx,ny,nz,nz_tot,dx,dy,dz,coord,nproc, z_i, u_star, lbz, &
total_time, jt_total
! nx, ny, nz - nodes in every direction
! z_i - non-dimensionalizing length
! dt - time-step
! These are the forces, and velocities on x,y, and z respectively
use sim_param, only : fxa, fya, fza, u, v, w
! Grid definition (LESGO)
use grid_m, only : grid
! MPI implementation from LESGO
#ifdef PPMPI
use mpi_defs
use mpi
use param, only : ierr, mpi_rprec, comm, coord
#endif
! Interpolating function for interpolating the velocity field to each
! actuator point
use functions, only : trilinear_interp, interp_to_uv_grid
! Actuator Turbine Model module
use atm_base
use actuator_turbine_model
use atm_input_util, only : rprec, turbineArray, turbineModel, eat_whitespace, &
atm_print_initialize, updateInterval
! Used for testing time
! use clock_m
implicit none
! Variable for interpolating the velocity in w onto the uv grid
real(rprec), allocatable, dimension(:,:,:) :: w_uv
private
public atm_lesgo_initialize, atm_lesgo_forcing, atm_lesgo_finalize
! This is a list that stores all the points in the domain with a body
! force due to the turbines.
type bodyForce_t
integer :: c ! Number of cells
! i,j,k stores the index for the point in the domain
integer, allocatable :: ijk(:,:)
real(rprec), allocatable :: force(:,:) ! Force vector on uv grid
real(rprec), allocatable :: location(:,:) ! Position vector on uv grid
end type bodyForce_t
! Body force field
type(bodyForce_t), allocatable, target, dimension(:) :: forceFieldUV, forceFieldW
! The very crucial parameter pi
real(rprec), parameter :: pi=acos(-1._rprec)
contains
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine atm_lesgo_initialize ()
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! Initialize the actuator turbine model
implicit none
! Counter to establish number of points which are influenced by body forces
integer :: m
! Allocate space for the w_uv variable
allocate(w_uv(nx,ny,lbz:nz))
call atm_initialize () ! Initialize the atm (ATM)
! Allocate the body force variables. It is an array with one per turbine.
allocate(forceFieldUV(numberOfTurbines))
allocate(forceFieldW(numberOfTurbines))
do m=1, numberOfTurbines
call atm_lesgo_findCells(m)
enddo
#ifdef PPMPI
call mpi_barrier( comm, ierr )
! This will create the output files and write initialization to the screen
if (coord == 0) then
call atm_initialize_output()
endif
#else
call atm_initialize_output()
#endif
end subroutine atm_lesgo_initialize
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine atm_lesgo_finalize ()
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! Initialize the actuator turbine model
implicit none
! Counter for turbines
integer :: i
! Write if on main node
if (coord == 0) then
write(*,*) 'Finalizing ATM...'
endif
! Loop through all turbines and finalize
do i = 1, numberOfTurbines
if (coord == turbineArray(i) % master) then
call atm_write_restart(i) ! Write the restart file
endif
end do
if (coord == 0) then
write(*,*) 'Done finalizing ATM'
endif
end subroutine atm_lesgo_finalize
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine atm_lesgo_findCells (m)
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This subroutine finds all the cells that surround the turbines
! The awkward if statements are to only consider points in front and behind
! the turbine without having to
implicit none
! The turbine number
integer, intent(in) :: m
! Counter to establish number of points which are influenced by body forces
integer :: cUV, cW ! Counters for number of points affected on UV and W grids
integer :: i, j, k
! Vector used to store x, y, z locations
real(rprec), dimension(3) :: vector_point
! These are the pointers to the grid arrays
real(rprec), pointer, dimension(:) :: x,y,z,zw
! Variables for MPI implementation
#ifdef PPMPI
integer :: base_group ! The base group from comm --> MPI_COMM_WORLD (all processors)
integer :: local_group ! The local group of processors
integer :: member ! (1 or 0) yes or no
integer :: num_of_members ! total number of members
#endif
! List of all the cores that belong to this turbine
! This variable gets allocated for each turbine
integer, allocatable, dimension(:) :: ls_of_cores
nullify(x,y,z,zw)
x => grid % x
y => grid % y
z => grid % z
zw => grid % zw
! Initialize internal counter to zero
forceFieldUV(m) % c = 0
! This will find all the locations that are influenced by each turbine
! It depends on a sphere centered on the rotor that extends beyond the blades
cUV=0 ! Initialize conuter
cW=0 ! Initialize conuter
do i=1,nx ! Loop through grid points in x
do j=1,ny ! Loop through grid points in y
do k=1,nz ! Loop through grid points in z
vector_point(1)=x(i)*z_i ! z_i used to dimensionalize LESGO
vector_point(2)=y(j)*z_i
! Take into account the UV grid
vector_point(3)=z(k)*z_i
if (distance(vector_point,turbineArray(m) % &
towerShaftIntersect) &
.le. turbineArray(m) % sphereRadius ) then
!~ if ( ( (vector_point(1) - turbineArray(m) % towerShaftIntersect(1) )**2 ) <= ( turbineArray(m) % projectionRadius**2 )) then
cUV=cUV+1
!~ endif
end if
! Take into account the W grid
vector_point(3)=zw(k)*z_i
if (distance(vector_point,turbineArray(m) % &
towerShaftIntersect) &
.le. turbineArray(m) % sphereRadius ) then
!~ if ( ( (vector_point(1) - turbineArray(m) % towerShaftIntersect(1) )**2 ) <= ( turbineArray(m) % projectionRadius**2 )) then
cW=cW+1
!~ endif
end if
enddo
enddo
enddo
! Allocate space for the force fields in UV and W grids
forceFieldUV(m) % c = cUV ! Counter
allocate(forceFieldUV(m) % force(3,cUV))
allocate(forceFieldUV(m) % location(3,cUV))
allocate(forceFieldUV(m) % ijk(3,cUV))
forceFieldW(m) % c = cW ! Counter
allocate(forceFieldW(m) % force(3,cW))
allocate(forceFieldW(m) % location(3,cW))
allocate(forceFieldW(m) % ijk(3,cW))
call mpi_barrier( comm, ierr )
write(*,*) 'Number of cells being affected by ATM in turbine', m, &
' cUV, cW = ', cUV, cW
call mpi_barrier( comm, ierr )
cUV=0
cW=0
! Run the same loop and save all variables
! The forceField arrays include all the forces which affect the domain
do i=1,nx ! Loop through grid points in x
do j=1,ny ! Loop through grid points in y
do k=1,nz ! Loop through grid points in z
vector_point(1)=x(i)*z_i ! z_i used to dimensionalize LESGO
vector_point(2)=y(j)*z_i
vector_point(3)=z(k)*z_i
if (distance(vector_point,turbineArray(m) % &
towerShaftIntersect) &
.le. turbineArray(m) % sphereRadius ) then
!~ if ( ( (vector_point(1) - turbineArray(m) % towerShaftIntersect(1) )**2 ) <= ( turbineArray(m) % projectionRadius**2 )) then
cUV=cUV+1
forceFieldUV(m) % ijk(1,cUV) = i
forceFieldUV(m) % ijk(2,cUV) = j
forceFieldUV(m) % ijk(3,cUV) = k
forceFieldUV(m) % location(1:3,cUV) = vector_point(1:3)
forceFieldUV(m) % force(1:3,cUV) = 0_rprec
endif
!~ endif
vector_point(3)=zw(k)*z_i
if (distance(vector_point,turbineArray(m) % &
towerShaftIntersect) &
.le. turbineArray(m) % sphereRadius ) then
!~ if ( ( (vector_point(1) - turbineArray(m) % towerShaftIntersect(1) )**2 ) <= ( turbineArray(m) % projectionRadius**2 )) then
cW=cW+1
forceFieldW(m) % ijk(1,cW) = i
forceFieldW(m) % ijk(2,cW) = j
forceFieldW(m) % ijk(3,cW) = k
forceFieldW(m) % location(1:3,cW) = vector_point(1:3)
forceFieldW(m) % force(:,cW) = 0_rprec
endif
!~ endif
enddo
enddo
enddo
! MPI distribution
! This will create new communicator for each turbine
#ifdef PPMPI
! Store the base group from the global communicator mpi_comm_world
call MPI_COMM_GROUP(comm, base_group, ierr)
! Assign member
member = 0
! Flag to know if this turbine is operating or not
turbineArray(m) % operate = .FALSE.
! Assign proper values if turbine affects processors in this region
if (cUV > 0 .or. cW >0) then
member = 1
turbineArray(m) % operate = .TRUE.
endif
! Find the total number of processors for each turbine
call mpi_allreduce(member, num_of_members, 1, MPI_INTEGER , MPI_SUM, comm, ierr)
if (turbineArray(m) % operate) then
! Find the master processor for each turbine
call mpi_allreduce(coord, turbineArray(m) % master, 1, MPI_INTEGER , &
MPI_MIN, comm, ierr)
else
! This is bogus since nz will always be less than number of processors
! This is done to ensure that the master is part of the processors
! that hold the turbine model
call mpi_allreduce(nz_tot, turbineArray(m) % master, 1, MPI_INTEGER , &
MPI_MIN, comm, ierr)
endif
allocate(ls_of_cores(num_of_members))
ls_of_cores(1) = turbineArray(m) % master
! Notice this list is valid only for decomposition in 1 direction
do i = 2, num_of_members
ls_of_cores(i) = ls_of_cores(i-1) + 1
enddo
! Write if this processor is the master
if (coord == turbineArray(m) % master) then
write(*,*) 'Master for turbine',m, 'is processor', turbineArray(m) % master
endif
! Create the new communicator and group for this turbine
call MPI_GROUP_INCL(base_group, num_of_members, ls_of_cores, local_group, ierr)
call MPI_COMM_CREATE(comm, local_group, turbineArray(m) % TURBINE_COMM_WORLD, ierr)
if (turbineArray(m) % operate) then
write(*,*) 'Processor', coord, 'has elements in turbine', m
else
write(*,*) 'Processor', coord, 'does NOT have elements in turbine', m
endif
call mpi_barrier( comm, ierr )
#endif
end subroutine atm_lesgo_findCells
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine atm_lesgo_forcing ()
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This subroutines calls the update function from the ATM Library
! and calculates the body forces needed in the domain
implicit none
integer :: i
!~ real(rprec) :: integrateNacelleForce, totForce
!~ integer :: c
!~ type(clock_t) :: myClock
!~ call myClock % start()
! Get the velocity from w onto the uv grid
w_uv = interp_to_uv_grid(w(1:nx,1:ny,lbz:nz), lbz)
! Update the blade positions based on the time-step
! Time needs to be dimensionalized
! All processors carry the blade points
!~ call myCock%start_time();
!~ call atm_update(dt*z_i/u_star)
! Loop through all turbines and rotate the blades
do i = 1, numberOfTurbines
! If statement is for running code only with the processors on that turbine
if (turbineArray(i) % operate) then
! Time is dimensionalize using velocity and length scale
call atm_update(i, dt*z_i/u_star, total_time*z_i/u_star)
endif
enddo
!~ call myClock % stop()
!~ write(*,*) 'coord ', coord, ' Update ', myClock % time
! Only calculate new forces if interval is correct
if ( mod(jt_total-1, updateInterval) == 0) then
! Establish all turbine properties as zero
! This is essential for paralelization
do i=1,numberOfTurbines
turbineArray(i) % bladeForces = 0._rprec
turbineArray(i) % integratedBladeForces = 0._rprec
turbineArray(i) % torqueRotor = 0._rprec
turbineArray(i) % thrust = 0._rprec
turbineArray(i) % alpha = 0._rprec
turbineArray(i) % Cd = 0._rprec
turbineArray(i) % Cl = 0._rprec
turbineArray(i) % Cl_b = 0._rprec
turbineArray(i) % G = 0._rprec
turbineArray(i) % lift = 0._rprec
turbineArray(i) % drag = 0._rprec
turbineArray(i) % Vmag = 0._rprec
turbineArray(i) % windVectors = 0._rprec
turbineArray(i) % nacelleForce = 0._rprec
turbineArray(i) % induction_a = 0._rprec
turbineArray(i) % u_infinity = 0._rprec
turbineArray(i) % bladeAlignedVectors = 0._rprec
turbineArray(i) % VelNacelle_sampled = 0._rprec
turbineArray(i) % VelNacelle_corrected = 0._rprec
turbineArray(i) % axialForce = 0._rprec
turbineArray(i) % tangentialForce = 0._rprec
! If statement is for running code only if grid points affected are in
! this processor. If not, no code is executed at all.
!~ if (forceFieldUV(i) % c .gt. 0 .or. forceFieldW(i) % c .gt. 0) then
if (turbineArray(i) % operate) then
! Set body forces to zero
forceFieldUV(i) % force = 0._rprec
forceFieldW(i) % force = 0._rprec
! Calculate forces for all turbines
call atm_lesgo_force(i)
endif
enddo
!~ call myClock % stop()
!~ write(*,*) 'coord ', coord, ' Forces ', myClock % time
!~ call myClock % start()
! This will gather all the blade forces from all processors
#ifdef PPMPI
! This will gather all values used in MPI
!~ call mpi_barrier( MPI_COMM_WORLD, ierr )
call atm_lesgo_mpi_gather()
!~ call mpi_barrier( MPI_COMM_WORLD, ierr )
#endif
!~ call myClock % stop()
!~ write(*,*) 'coord ', coord, ' MPI Gather ', myClock % time
!~ call myClock % start()
do i=1,numberOfTurbines
!~ if ( forceFieldUV(i) % c .gt. 0 .or. forceFieldW(i) % c .gt. 0) then
! Only perform is turbine is active in this processor
if (turbineArray(i) % operate) then
! Convolute force onto the domain
call atm_lesgo_convolute_force(i)
! Only do this if the correction is active
if (turbineArray(i) % tipALMCorrection .eqv. .true.) then
! Compute the correction for the Cl coefficient
call atm_compute_cl_correction(i)
endif
endif
!~ ! Sync the nacelle force
!~ integrateNacelleForce=0.
!~
!~ do c=1,forceFieldUV(i) % c
!~ if (turbineArray(i) % nacelle) then
!~ integrateNacelleForce = integrateNacelleForce + &
!~ forceFieldUV(i) % force(1,c) * dx *dy * dz * z_i**2*u_star**2
!~ endif
!~ enddo
enddo
!~ totForce=0.
!~ call mpi_allreduce( integrateNacelleForce, totForce, 1, &
!~ mpi_rprec, mpi_sum, comm, ierr)
!write(*,*) 'Integrated Nacelle Force is: ', integrateNacelleForce
!~ if (coord == 0) then
!~ write(*,*) 'Integrated Total Force is: ', totForce
!~ endif
endif
!~ call myClock % stop()
!~ write(*,*) 'coord ', coord, ' Convolute force ', myClock % time
! This will apply body forces onto the flow field if there are forces within
! this domain
!~ call myClock % start()
call atm_lesgo_apply_force()
!~ call myClock % stop()
!~ write(*,*) 'coord ', coord, ' Apply force ', myClock % time
!!! Sync the integrated forces (used for debugging)
!do i=1,numberOfTurbines
! j=turbineArray(i) % turbineTypeID ! The turbine type ID
! ! Sync all the integrated blade forces
! turbineArray(i) % bladeVectorDummy=turbineArray(i) % integratedBladeForces
! call mpi_allreduce(turbineArray(i) % bladeVectorDummy, &
! turbineArray(i) % integratedBladeForces, &
! size(turbineArray(i) % bladeVectorDummy), &
! mpi_rprec, mpi_sum, comm, ierr)
! if (coord==0) then
! do q=1, turbineArray(i) % numBladePoints
! do n=1, turbineArray(i) % numAnnulusSections
! do m=1, turbineModel(j) % numBl
! write(*,*) 'blade ',m,'section ',q, 'force ratio', &
! turbineArray(i) % integratedBladeForces(m,n,q,1) / &
! turbineArray(i) % bladeForces(m,n,q,1) , &
! turbineArray(i) % integratedBladeForces(m,n,q,2) / &
! turbineArray(i) % bladeForces(m,n,q,2) , &
! turbineArray(i) % integratedBladeForces(m,n,q,3) / &
! turbineArray(i) % bladeForces(m,n,q,3)
! enddo
! enddo
! enddo
! endif
!enddo
do i=1, numberOfTurbines
if (coord == turbineArray(i) % master) then
!~ call myClock % start()
call atm_output(i, jt_total, total_time*z_i/u_star)
!~ call myClock % stop()
!~ write(*,*) 'coord ', coord, ' Output ', myClock % time
endif
enddo
! Make sure all processors stop wait for the output to be completed
#ifdef PPMPI
call mpi_barrier( comm, ierr )
#endif
end subroutine atm_lesgo_forcing
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! Complie this subroutines only if MPI will be used
#ifdef PPMPI
subroutine atm_lesgo_mpi_gather()
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This subroutine will gather the necessary outputs from the turbine models
! so all processors have acces to it. This is done by means of all reduce SUM
implicit none
integer :: i
real(rprec) :: torqueRotor, thrust, VelNacelle_sampled, VelNacelle_corrected
real(rprec), dimension(3) :: nacelleForce
! Pointer for MPI communicator
integer, pointer :: TURBINE_COMMUNICATOR
do i=1,numberOfTurbines
! Only do MPI sums if processors are operating in this turbine
if (turbineArray(i) % operate) then
TURBINE_COMMUNICATOR => turbineArray(i) % TURBINE_COMM_WORLD
turbineArray(i) % bladeVectorDummy = turbineArray(i) % bladeForces
! Sync all the blade forces
call mpi_allreduce(turbineArray(i) % bladeVectorDummy, &
turbineArray(i) % bladeForces, &
size(turbineArray(i) % bladeVectorDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync bladeAlignedVectors
turbineArray(i) % bladeVectorDummy = &
turbineArray(i) % bladeAlignedVectors(:,:,:,1,:)
call mpi_allreduce(turbineArray(i) % bladeVectorDummy, &
turbineArray(i) % bladeAlignedVectors(:,:,:,1,:), &
size(turbineArray(i) % bladeVectorDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
turbineArray(i) % bladeVectorDummy = &
turbineArray(i) % bladeAlignedVectors(:,:,:,2,:)
call mpi_allreduce(turbineArray(i) % bladeVectorDummy, &
turbineArray(i) % bladeAlignedVectors(:,:,:,2,:), &
size(turbineArray(i) % bladeVectorDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
turbineArray(i) % bladeVectorDummy = &
turbineArray(i) % bladeAlignedVectors(:,:,:,3,:)
call mpi_allreduce(turbineArray(i) % bladeVectorDummy, &
turbineArray(i) % bladeAlignedVectors(:,:,:,3,:), &
size(turbineArray(i) % bladeVectorDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync alpha
turbineArray(i) % bladeScalarDummy = turbineArray(i) % alpha
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % alpha, &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync lift
turbineArray(i) % bladeScalarDummy = turbineArray(i) % lift
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % lift, &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync drag
turbineArray(i) % bladeScalarDummy = turbineArray(i) % drag
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % drag, &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync Cl
turbineArray(i) % bladeScalarDummy = turbineArray(i) % Cl
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % Cl, &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync Cd
turbineArray(i) % bladeScalarDummy = turbineArray(i) % Cd
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % Cd, &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync Vmag
turbineArray(i) % bladeScalarDummy = turbineArray(i) % Vmag
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % Vmag, &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync axialForce
turbineArray(i) % bladeScalarDummy = turbineArray(i) % axialForce
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % axialForce, &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync tangentialForce
turbineArray(i) % bladeScalarDummy = turbineArray(i) % tangentialForce
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % tangentialForce, &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync wind Vectors (Vaxial, Vtangential, Vradial)
turbineArray(i) % bladeVectorDummy = turbineArray(i) % &
windVectors(:,:,:,1:3)
call mpi_allreduce(turbineArray(i) % bladeVectorDummy, &
turbineArray(i) % windVectors(:,:,:,1:3), &
size(turbineArray(i) % bladeVectorDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync induction factor
turbineArray(i) % bladeScalarDummy = turbineArray(i) % &
induction_a(:,:,:)
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % induction_a(:,:,:), &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync u infinity
turbineArray(i) % bladeScalarDummy = turbineArray(i) % &
u_infinity(:,:,:)
call mpi_allreduce(turbineArray(i) % bladeScalarDummy, &
turbineArray(i) % u_infinity(:,:,:), &
size(turbineArray(i) % bladeScalarDummy), &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Store the torqueRotor.
! Needs to be a different variable in order to do MPI Sum
torqueRotor=turbineArray(i) % torqueRotor
thrust=turbineArray(i) % thrust
nacelleForce=turbineArray(i) % nacelleForce
VelNacelle_sampled=turbineArray(i) % VelNacelle_sampled
VelNacelle_corrected=turbineArray(i) % VelNacelle_corrected
! Sum all the individual torqueRotor from different blade points
call mpi_allreduce( torqueRotor, turbineArray(i) % torqueRotor, &
1, mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sum all the individual thrust from different blade points
call mpi_allreduce( thrust, turbineArray(i) % thrust, &
1, mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync the nacelle force
call mpi_allreduce( nacelleForce, turbineArray(i) % nacelleForce, &
size(turbineArray(i) % nacelleForce), mpi_rprec, &
mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync the nacelle sampled velocity
call mpi_allreduce( VelNacelle_sampled, &
turbineArray(i) % VelNacelle_sampled, 1, &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
! Sync the nacelle corrected velocity
call mpi_allreduce( VelNacelle_corrected, &
turbineArray(i) % VelNacelle_corrected, 1, &
mpi_rprec, mpi_sum, TURBINE_COMMUNICATOR, ierr)
endif
enddo
end subroutine atm_lesgo_mpi_gather
#endif
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine atm_lesgo_force(i)
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This will feed the velocity at all the actuator points into the atm
! This is done by using trilinear interpolation from lesgo
! Force will be calculated based on the velocities and stored on forceField
implicit none
integer, intent(in) :: i ! The turbine number
integer :: m,n,q,j
! mpi_velocity only used for Spalart method
real(rprec), dimension(3) :: velocity, mpi_velocity
real(rprec), dimension(3) :: xyz ! Point onto which to interpolate velocity
real(rprec), pointer, dimension(:) :: x,y,z,zw
! The MPI turbine communcator
integer, pointer :: TURBINE_COMM
TURBINE_COMM => turbineArray(i) % TURBINE_COMM_WORLD
j=turbineArray(i) % turbineTypeID ! The turbine type ID
! Declare x, y, and z as pointers to the grid variables x, y, and z (LESGO)
nullify(x,y,z,zw)
x => grid % x
y => grid % y
z => grid % z
zw => grid % zw
if (turbineArray(i) % sampling == 'Spalart') then
! This loop goes through all the blade points and calculates the respective
! body forces then imposes it onto the force field
do q=1, turbineArray(i) % numBladePoints
do n=1, turbineArray(i) % numAnnulusSections
do m=1, turbineModel(j) % numBl
! Actuator point onto which to interpolate the velocity
xyz=turbineArray(i) % bladePoints(m,n,q,1:3)
velocity = 0._rprec
mpi_velocity = 0._rprec
call atm_lesgo_compute_spalart_u(i, xyz, velocity)
mpi_velocity = velocity
! Complie this subroutines only if MPI will be used
#ifdef PPMPI
!~ call mpi_barrier( TURBINE_COMM, ierr )
! Sync all the blade forces
call mpi_allreduce(mpi_velocity, velocity, size(velocity), &
mpi_rprec, mpi_sum, TURBINE_COMM , ierr)
#endif
! This will compute the blade force for the specific point
if ( z(1) <= xyz(3)/z_i .and. xyz(3)/z_i < z(nz) ) then
call atm_computeBladeForce(i,m,n,q,velocity)
else
velocity = 0._rprec
endif
enddo
enddo
enddo
else if (turbineArray(i) % sampling == 'atPoint') then
! This loop goes through all the blade points and calculates the respective
! body forces then imposes it onto the force field
do q=1, turbineArray(i) % numBladePoints
do n=1, turbineArray(i) % numAnnulusSections
do m=1, turbineModel(j) % numBl
! Actuator point onto which to interpolate the velocity
xyz=turbineArray(i) % bladePoints(m,n,q,1:3)
! Non-dimensionalizes the point location
xyz=xyz/z_i
! Interpolate velocities if inside the domain
if ( z(1) <= xyz(3) .and. xyz(3) < z(nz) ) then
velocity(1)= &
trilinear_interp(u(1:nx,1:ny,lbz:nz),lbz,xyz)*u_star
velocity(2)= &
trilinear_interp(v(1:nx,1:ny,lbz:nz),lbz,xyz)*u_star
velocity(3)= &
trilinear_interp(w_uv(1:nx,1:ny,lbz:nz),lbz,xyz)*u_star
! This will compute the blade force for the specific point
call atm_computeBladeForce(i,m,n,q,velocity)
endif
enddo
enddo
enddo
endif
! Calculate Nacelle force
if (turbineArray(i) % nacelle) then
xyz=turbineArray(i) % nacelleLocation
xyz=xyz/z_i
if ( z(1) <= xyz(3) .and. xyz(3) < z(nz) ) then
velocity(1)= &
trilinear_interp(u(1:nx,1:ny,lbz:nz),lbz,xyz)*u_star
velocity(2)= &
trilinear_interp(v(1:nx,1:ny,lbz:nz),lbz,xyz)*u_star
velocity(3)= &
trilinear_interp(w_uv(1:nx,1:ny,lbz:nz),lbz,xyz)*u_star
call atm_computeNacelleForce(i,velocity)
endif
endif
end subroutine atm_lesgo_force
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine atm_lesgo_compute_Spalart_u(i, xyz, velocity)
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This will calculate the sampling velocity using the proposed method
! from Spalart
! n turbine number
! xyz actuator point position vector
! velocity reference velocity for computing lift and drag
implicit none
integer, intent(in) :: i
real(rprec), intent(in) :: xyz(3)
real(rprec), intent(inout) :: velocity(3)
integer :: c, m, n, q
! Pointers for mesh
real(rprec), pointer, dimension(:) :: z,zw
! Test for time optimization
real(rprec) :: dist, a(3), projectradius, epsilon
nullify(z,zw)
z => grid % z
zw => grid % zw
! Value of epsilon
epsilon=turbineArray(i) % epsilon
! Projection radius
projectradius = turbineArray(i) % projectionRadius
! Set the velocity to zero
velocity = 0._rprec
do c=1,forceFieldUV(i) % c
a = forceFieldUV(i) % location(1:3, c)
m = forceFieldUV(i) % ijk(1, c)
n = forceFieldUV(i) % ijk(2, c)
q = forceFieldUV(i) % ijk(3, c)
dist=((a(1)-xyz(1))**2+(a(2)-xyz(2))**2+(a(3)-xyz(3))**2)**0.5
if (dist .le. projectradius * z_i) then
if ( z(1) <= a(3)/z_i .and. a(3)/z_i < z(nz)) then
! The value of the kernel. This is the actual smoothing function
velocity(1) = velocity(1) + u(m,n,q) * exp(-(dist/epsilon)**2) &
/ ((epsilon**3.)*(pi**1.5))
velocity(2) = velocity(2) + v(m,n,q) * exp(-(dist/epsilon)**2) &
/ ((epsilon**3.)*(pi**1.5))
endif
endif
enddo
do c=1,forceFieldW(i) % c
a = forceFieldW(i) % location(1:3, c)
m = forceFieldW(i) % ijk(1, c)
n = forceFieldW(i) % ijk(2, c)
q = forceFieldW(i) % ijk(3, c)
dist=((a(1)-xyz(1))**2+(a(2)-xyz(2))**2+(a(3)-xyz(3))**2)**0.5
if (dist .le. projectradius) then
if ( z(1) <= a(3)/z_i .and. a(3)/z_i < z(nz)) then
! The value of the kernel. This is the actual smoothing function
velocity(3) = velocity(3) + w(m,n,q) * exp(-(dist/epsilon)**2) &
/ ((epsilon**3.)*(pi**1.5))
endif
endif
enddo
velocity = velocity * u_star * z_i * dx * z_i * dy *z_i * dz
end subroutine atm_lesgo_compute_Spalart_u
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine atm_lesgo_convolute_force(i)
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This will convolute the forces for each turbine
implicit none
!~ type(clock_t) :: myClock
integer, intent(in) :: i
integer :: j, m, n, q, c,mmend,nnend,qqend
integer :: ii, jj, kk ! Indices for lesgo fields
! Test for time optimization
real(rprec) :: dist,a(3),b(3),projectradius,epsilon,const1,const2,const3
real(rprec) :: nacelleEpsilon
! Variables for convolution force
real(rprec) :: kernel, force(3)
! Pointers for the turbineArray quantities
real(rprec), pointer, dimension(:,:,:,:) :: bladeForces, bladePoints
real(rprec), pointer, dimension(:,:) :: bodyForceUV, bodyForceW
nullify(bladeForces)
nullify(bladePoints)
nullify(bodyForceUV)
nullify(bodyForceW)
bladeForces => turbineArray(i) % bladeForces
bladePoints => turbineArray(i) % bladePoints
bodyForceUV => forceFieldUV(i) % force
bodyForceW => forceFieldW(i) % force
!real(rprec) :: dummyForce(3) ! Debugging
j=turbineArray(i) % turbineTypeID ! The turbine type ID
! This will convolute the blade force onto the grid points
! affected by the turbines on both grids
! Only if the distance is less than specified value
mmend=turbineModel(j) % numBl
nnend=turbineArray(i) % numAnnulusSections
qqend=turbineArray(i) % numBladePoints
projectradius=turbineArray(i) % projectionRadius
epsilon=turbineArray(i) % epsilon
nacelleEpsilon = turbineArray(i) % nacelleEpsilon
const1=1./ ((epsilon**3.)*(pi**1.5))
const2= z_i/(u_star**2.)
const3=const1*const2
! Body Force implementation using velocity sampling at the actuator point
if (turbineArray(i) % sampling == 'atPoint') then
!~ call myClock % start()
do c=1,forceFieldUV(i) % c
a= forceFieldUV(i) % location(1:3,c)
force=0._rprec
! Blade forces
do m=1, mmend
do n=1, nnend
do q=1, qqend
b= bladePoints(m,n,q,:)
dist=((a(1)-b(1))**2+(a(2)-b(2))**2+(a(3)-b(3))**2)**0.5
if (dist .le. projectradius) then
! The value of the kernel. This is the actual smoothing function
force(1:2) = force(1:2) + bladeForces(m,n,q,1:2) *exp(-(dist/epsilon)**2)
endif
enddo
enddo
enddo
force(1:2)=force(1:2)* const3
! Nacelle force
if (turbineArray(i) % nacelle) then
b=turbineArray(i) % nacelleLocation
dist=((a(1)-b(1))**2+(a(2)-b(2))**2+(a(3)-b(3))**2)**0.5
!~ if (dist .le. projectradius) then
! The value of the kernel. This is the actual smoothing function
kernel=exp(-(dist/nacelleEpsilon)**2.) / ( (nacelleEpsilon**3.)*(pi**1.5) )
!write(*,*) 'kernel Value= ', kernel
force(1:2) = force(1:2)+turbineArray(i) % nacelleForce(1:2) * &