-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNaiveBayes.h
76 lines (64 loc) · 2.92 KB
/
NaiveBayes.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
Naive Bayes classification library for ESP32
Inspired by:
https://www.analyticsvidhya.com/blog/2021/01/a-guide-to-the-naive-bayes-algorithm/
This library implements Naive Bayes classification for continuous data
(c) 2021 Lesept
contact: [email protected]
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef NB_h
#define NB_h
#include <Arduino.h>
#define MIN_float -HUGE_VAL
#define MAX_float +HUGE_VAL
typedef struct
{
std::vector<float> In; // vector of input data
uint8_t Out; // output (class)
} Data;
class NB
{
public:
NB (int, int, int, bool);
NB (int, int, int);
~NB ();
void addData (std::vector<float> const&, uint8_t, std::vector<Data> &);
void addData (std::vector<float> const&, std::vector<Data> &);
void addDataCat (std::vector<uint8_t> const&, std::vector<Data> &);
void fit (std::vector<Data> const&);
uint8_t predict (std::vector<float> &, std::vector<Data> &);
uint8_t predictCat (std::vector<uint8_t> const&, std::vector<Data> const&);
uint8_t predictGau (std::vector<uint8_t> const&, std::vector<Data> const&);
void destroyDataset (std::vector<Data> &);
private:
std::vector<Data> _dataset;
std::vector<float>valMin;
std::vector<float>valMax;
std::vector<int> number;
int _nData, _nFeatures, _nClasses, _neighbours, _maxFeature;
float _radius;
bool _learn;
int createDataset (std::vector<Data>);
void countDataset (std::vector<Data> const&);
int normalizeDataset (std::vector<Data> const &);
inline float computeDistance (std::vector<float> const&, std::vector<Data> const&, int);
int countNeighbours (std::vector<float> const&, std::vector<Data> const&);
uint8_t findBestClass (std::vector<float> const&, std::vector<Data> const&);
float gaussProb (float, float, float);
};
#endif