diff --git a/NerlnetBuild.sh b/NerlnetBuild.sh index c1837453..a2e03e64 100755 --- a/NerlnetBuild.sh +++ b/NerlnetBuild.sh @@ -139,7 +139,6 @@ parse_commandline "$@" NERLNET_BUILD_PREFIX="[Nerlnet Build] " - OPTION="add_compile_definitions(EIGEN_MAX_ALIGN_BYTES=8)" is_rasp="$(grep -c raspbian /etc/os-release)" if [ $is_rasp -gt "0" ]; then @@ -150,6 +149,18 @@ else sed -i "s/^.*\(${OPTION}.*$\)/#\1/" CMakeLists.txt fi +if command -v python3 >/dev/null 2>&1; then + echo "$NERLNET_BUILD_PREFIX Python 3 is installed" + # Generate auto-generated files + AUTOGENERATED_WORKER_DEFINITIONS_PATH="`pwd`/src_cpp/opennnBridge/worker_definitions_ag.h" + echo "$NERLNET_BUILD_PREFIX Generate auto-generated files" + python3 src_py/nerlPlanner/CppHeadersExporter.py --output $AUTOGENERATED_WORKER_DEFINITIONS_PATH #--debug +else + echo "$NERLNET_BUILD_PREFIX Python 3 is not installed" + echo "Autogenerated files will not be generated" + echo "These files are based on last generated files brought from the repository" +fi + echo "$NERLNET_BUILD_PREFIX Building Nerlnet Library" echo "$NERLNET_BUILD_PREFIX Cmake command of Nerlnet NIFPP" set -e diff --git a/src_cpp/opennnBridge/worker_definitions_ag.h b/src_cpp/opennnBridge/worker_definitions_ag.h new file mode 100644 index 00000000..5e57d143 --- /dev/null +++ b/src_cpp/opennnBridge/worker_definitions_ag.h @@ -0,0 +1,15 @@ +#pragma once + +// This file was auto generated +#define NERLPLANNER_VERSION "1.0.0" + +enum LayerTypeEnum{LAYER_TYPE_DEFAULT=0,LAYER_TYPE_SCALING=1,LAYER_TYPE_CNN=2,LAYER_TYPE_PERCEPTRON=3,LAYER_TYPE_POOLING=4,LAYER_TYPE_PROBABILISTIC=5,LAYER_TYPE_LSTM=6,LAYER_TYPE_RECCURRENT=7,LAYER_TYPE_UNSCALING=8,LAYER_TYPE_BOUNDING=9}; +enum ProbabilisticActivationEnum{PROBABILISTIC_ACTIVATION_BINARY=1,PROBABILISTIC_ACTIVATION_LOGISTIC=2,PROBABILISTIC_ACTIVATION_COMPETITIVE=3,PROBABILISTIC_ACTIVATION_SOFTMAX=4}; +enum ScalingEnum{SCALING_NONE=1,SCALING_MINMAX=2,SCALING_MEANSTD=3,SCALING_STD=4,SCALING_LOG=5}; +enum UnscalingEnum{UNSCALING_NONE=1,UNSCALING_MINMAX=2,UNSCALING_MEANSTD=3,UNSCALING_STD=4,UNSCALING_LOG=5}; +enum PoolingEnum{POOLING_NONE=1,POOLING_MAX=2,POOLING_AVG=3}; +enum ActivationEnum{ACTIVATION_THRESHOLD=1,ACTIVATION_SIGN=2,ACTIVATION_LOGISTIC=3,ACTIVATION_TANH=4,ACTIVATION_LINEAR=5,ACTIVATION_RELU=6,ACTIVATION_ELU=7,ACTIVATION_SELU=8,ACTIVATION_SOFT_PLUS=9,ACTIVATION_SOFT_SIGN=10,ACTIVATION_HARD_SIGMOID=11}; +enum LayerTypeEnum{LAYER_TYPE_DEFAULT=0,LAYER_TYPE_SCALING=1,LAYER_TYPE_CNN=2,LAYER_TYPE_PERCEPTRON=3,LAYER_TYPE_POOLING=4,LAYER_TYPE_PROBABILISTIC=5,LAYER_TYPE_LSTM=6,LAYER_TYPE_RECCURRENT=7,LAYER_TYPE_UNSCALING=8,LAYER_TYPE_BOUNDING=9}; +enum ModelTypeEnum{MODEL_TYPE_APPROXIMATION=1,MODEL_TYPE_CLASSIFICATION=2,MODEL_TYPE_FORECASTING=3,MODEL_TYPE_ENCODER_DECODER=4,MODEL_TYPE_NN=5,MODEL_TYPE_AUTOENCODER=6,MODEL_TYPE_AE_CLASSIFIER=7,MODEL_TYPE_FED_CLIENT=8,MODEL_TYPE_FED_SERVER=9}; +enum OptimizerEnum{OPTIMIZER_NONE=0,OPTIMIZER_SGD=1,OPTIMIZER_MINI_BATCH=2,OPTIMIZER_MOMENTUM=3,OPTIMIZER_NAG=4,OPTIMIZER_ADAGRAD=5,OPTIMIZER_ADAM=6}; +enum LossMethodEnum{LOSS_METHOD_SSE=1,LOSS_METHOD_MSE=2,LOSS_METHOD_NSE=3,LOSS_METHOD_MINKOWSKIE=4,LOSS_METHOD_WSE=5,LOSS_METHOD_CEE=6}; diff --git a/src_py/apiServer/experiment_flow_test.py b/src_py/apiServer/experiment_flow_test.py index 12074f6e..0c8ffdc5 100644 --- a/src_py/apiServer/experiment_flow_test.py +++ b/src_py/apiServer/experiment_flow_test.py @@ -5,6 +5,8 @@ from logger import * from stats import Stats +TEST_ACCEPTABLE_MARGIN_OF_ERROR = 0.02 + def print_test(in_str : str): PREFIX = "[NERLNET-TEST] " LOG_INFO(f"{PREFIX} {in_str}") @@ -62,7 +64,7 @@ def print_test(in_str : str): exp_stats = Stats(experiment_inst) data = exp_stats.get_loss_min() -print("min loss of each worker") +print_test("min loss of each worker") print(data) conf = exp_stats.get_confusion_matrices() @@ -73,7 +75,9 @@ def print_test(in_str : str): for j in acc_stats[worker].keys(): diff = abs(acc_stats[worker][j]["F1"] - baseline_acc_stats[worker][str(j)]["F1"]) diff_from_baseline.append(diff/baseline_acc_stats[worker][str(j)]["F1"]) -anomaly_detected = not all([x < 0.01 for x in diff_from_baseline]) +anomaly_detected = not all([x < TEST_ACCEPTABLE_MARGIN_OF_ERROR for x in diff_from_baseline]) if anomaly_detected: + print_test("Anomaly failure detected") + print_test(f"diff_from_baseline: {diff_from_baseline}") exit(1) diff --git a/src_py/nerlPlanner/CppHeadersExporter.py b/src_py/nerlPlanner/CppHeadersExporter.py new file mode 100644 index 00000000..7c052962 --- /dev/null +++ b/src_py/nerlPlanner/CppHeadersExporter.py @@ -0,0 +1,77 @@ +import argparse +import os +from CppHeadersExporterDefs import * +from JsonElementWorkerDefinitions import * +from Definitions import VERSION as NERLPLANNER_VERSION + +DEBUG = False + +def gen_header_exporter_logger(message : str): + if DEBUG: + print(f'[NERLPLANNER][AUTO_HEADER_GENERATOR][DEBUG] {message}') + +def gen_header_worker_parameters_definitions(header_path : str, debug : bool = False): + global DEBUG + DEBUG = debug + + empty_line = '\n' + pragma_once = PragmaOnce() + gen_header_exporter_logger(pragma_once.generate_code()) + auto_generated_header = AutoGeneratedHeader() + gen_header_exporter_logger(auto_generated_header.generate_code()) + nerlplanner_version = Definition('NERLPLANNER_VERSION', f'"{NERLPLANNER_VERSION}"') + + layer_type_enums = EnumType('LayerTypeEnum', LayerTypeMap, True, 'LAYER_TYPE') + gen_header_exporter_logger(layer_type_enums.generate_code()) + probabilistic_activation_enums = EnumType('ProbabilisticActivationEnum', ProbabilisticActivationFunctionMap, True, 'PROBABILISTIC_ACTIVATION') + gen_header_exporter_logger(probabilistic_activation_enums.generate_code()) + scaling_enums = EnumType('ScalingEnum', ScalingMethodMap, True, 'SCALING') + gen_header_exporter_logger(scaling_enums.generate_code()) + unscaling_enums = EnumType('UnscalingEnum', UnScalingMethodMap, True, 'UNSCALING') + gen_header_exporter_logger(unscaling_enums.generate_code()) + pooling_enums = EnumType('PoolingEnum', PoolingMethodMap, True, 'POOLING') + gen_header_exporter_logger(pooling_enums.generate_code()) + activation_enums = EnumType('ActivationEnum', ActivationFunctionsMap, True, 'ACTIVATION') + gen_header_exporter_logger(activation_enums.generate_code()) + layer_type_enums = EnumType('LayerTypeEnum', LayerTypeMap, True, 'LAYER_TYPE') + gen_header_exporter_logger(layer_type_enums.generate_code()) + model_type_enums = EnumType('ModelTypeEnum', ModelTypeMapping, True, 'MODEL_TYPE') + gen_header_exporter_logger(model_type_enums.generate_code()) + optimizer_enums = EnumType('OptimizerEnum', OptimizerTypeMapping, True, 'OPTIMIZER') + gen_header_exporter_logger(optimizer_enums.generate_code()) + loss_method_enums = EnumType('LossMethodEnum', LossMethodMapping, True, 'LOSS_METHOD') + gen_header_exporter_logger(loss_method_enums.generate_code()) + + if os.path.dirname(header_path): + os.makedirs(os.path.dirname(header_path), exist_ok=True) + + with open(header_path, 'w') as f: + f.write(pragma_once.generate_code()) + f.write(empty_line) + f.write(auto_generated_header.generate_code()) + f.write(nerlplanner_version.generate_code()) + f.write(empty_line) + f.write(layer_type_enums.generate_code()) + f.write(probabilistic_activation_enums.generate_code()) + f.write(scaling_enums.generate_code()) + f.write(unscaling_enums.generate_code()) + f.write(pooling_enums.generate_code()) + f.write(activation_enums.generate_code()) + f.write(layer_type_enums.generate_code()) + f.write(model_type_enums.generate_code()) + f.write(optimizer_enums.generate_code()) + f.write(loss_method_enums.generate_code()) + + + + +def main(): + parser = argparse.ArgumentParser(description='Generate C++ header file for nerlPlanner') + parser.add_argument('-o', '--output', help='output header file path', required=True) + parser.add_argument('-d', '--debug', help='debug mode', action='store_true') + args = parser.parse_args() + gen_header_worker_parameters_definitions(args.output, args.debug) + +if __name__=="__main__": + main() + diff --git a/src_py/nerlPlanner/CppHeadersExporterDefs.py b/src_py/nerlPlanner/CppHeadersExporterDefs.py new file mode 100644 index 00000000..f80b83f8 --- /dev/null +++ b/src_py/nerlPlanner/CppHeadersExporterDefs.py @@ -0,0 +1,49 @@ +from collections import OrderedDict + +class AutoGeneratedHeader: + def __init__(self) -> None: + pass + + def generate_code(self): + return f'// This file was auto generated\n' + +class PragmaOnce: + def __init__(self, header_name: str = '') -> None: + self.header_name = header_name + + def generate_code(self): + return f'#pragma once\n' + +class EnumType: + def __init__(self, enum_name : str, in_ordered_dict : OrderedDict, all_caps : bool = False, prefix = '') -> None: + self.enum_name = enum_name + self.ordered_dict = in_ordered_dict + self.prefix = prefix + self.all_caps = all_caps + + def generate_code(self): + code = f'enum {self.enum_name}'+'{' + for key, value in self.ordered_dict.items(): + key = key.upper() if self.all_caps else key + last_key = list(self.ordered_dict.keys())[-1].upper() if self.all_caps else list(self.ordered_dict.keys())[-1] + code += f'{self.prefix}_{key}={value}' + code += ',' if last_key != key else '' + return code.replace('-','_') + '};\n' + +class Definition: + def __init__(self, definition, value ) -> None: + self.definition = definition + self.value = value + + def generate_code(self): + return f'#define {self.definition} {self.value}\n' + +class ConstExpression: + def __init__(self, type, variable, value) -> None: + self.type = type + self.variable = variable + self.value = value + + def generate_code(self): + assert self.type in ['int', 'float', 'double', 'char', 'std::string'] + return f'constexpr {self.type} {self.variable} = {self.value};\n' \ No newline at end of file diff --git a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py index 7584800a..f7b70330 100644 --- a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py +++ b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py @@ -1,9 +1,5 @@ # Maps are based on src_cpp/opennnBridge/definitionsNN.h - -LAYER_SPECIAL_TYPE_IDX_SCALING = "1" -LAYER_SPECIAL_TYPE_IDX_POOLING = "2" - from collections import OrderedDict LayerTypeMap = OrderedDict([ @@ -75,36 +71,36 @@ ("Bounding" , None)] ) -ModelTypeMapping = { - "approximation" : "1", - "classification" : "2", - "forecasting" : "3", - "encoder_decoder" : "4", - "nn" : "5", - "autoencoder" : "6", - "ae-classifier" : "7", - "fed-client": "8", - "fed-server": "9" -} - -OptimizerTypeMapping = { - "none" : "0", - "SGD" : "1", - "Mini-Batch" : "2", - "Momentum" : "3", - "NAG" : "4", - "Adagrad" : "5", - "ADAM" : "6" -} - -LossMethodMapping = { - "SSE" : "1", # Sum squared Error - "MSE" : "2", # Mean Squared Error - "NSE" : "3", # Normalized Squared Error - "Minkowski-E" : "4", # Minkowski Error - "WSE" : "5", # Weighted Squared Error - "CEE" : "6", # Cross Entropy Error -} +ModelTypeMapping = OrderedDict([ + ("approximation" , "1"), + ("classification" , "2"), + ("forecasting" , "3"), + ("encoder_decoder" , "4"), + ("nn" , "5"), + ("autoencoder" , "6"), + ("ae-classifier" , "7"), + ("fed-client", "8"), + ("fed-server", "9") +]) + +OptimizerTypeMapping = OrderedDict([ + ("none" , "0"), + ("SGD" , "1"), + ("Mini-Batch" , "2"), + ("Momentum" , "3"), + ("NAG" , "4"), + ("Adagrad" , "5"), + ("ADAM" , "6") +]) + +LossMethodMapping = OrderedDict([ + ("SSE" , "1"), # Sum squared Error + ("MSE" , "2"), # Mean Squared Error + ("NSE" , "3"), # Normalized Squared Error + ("MinkowskiE" , "4"), # Minkowski Error + ("WSE" , "5"), # Weighted Squared Error + ("CEE" , "6"), # Cross Entropy Error +]) def get_key_by_value(in_map : dict, value): list_of_values = list(in_map.values())