-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
25 lines (21 loc) · 856 Bytes
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import torch
import numpy as np
from torch.utils.data import Dataset
from glob import glob
from skimage.io import imread
class img_dataset(Dataset):
def __init__(self, input_folder, output_folder):
self.input_paths = glob(input_folder + "*.jpg")
self.output_paths = glob(output_folder + "*.jpg")
self.input_paths.sort()
self.output_paths.sort()
def __len__(self):
return len(self.input_paths)
def __getitem__(self, idx):
data = (imread(self.input_paths[idx]).astype(np.float32) * 2 / 255.) - 1
label = (imread(self.output_paths[idx]).astype(np.float32) * 2 / 255.) - 1
data = np.moveaxis(data, -1, 0)
label = np.moveaxis(label, -1, 0)
inpt = torch.tensor(data, dtype=torch.float)
oupt = torch.tensor(label, dtype=torch.float)
return inpt, oupt