-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathidla_thesis.tex
4547 lines (4302 loc) · 172 KB
/
idla_thesis.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt]{article}
\renewcommand{\baselinestretch}{1.2}
\newcommand{\paragraphAndNewLine}[1]{\paragraph{#1}\mbox{}\\}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\graphicspath{ {./images/} }
\usepackage{longtable}
\usepackage{float}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{marvosym}
\usepackage{wasysym}
\usepackage{amssymb}
\usepackage{hyperref}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{amsthm}
\usepackage{tabularx}
\usepackage{subcaption}
\usepackage{enumitem}
\usepackage[nottoc]{tocbibind}
\usepackage{tikz}
\usepackage{tkz-euclide}
\usetikzlibrary{calc,intersections}
\usetikzlibrary{arrows}
\usetikzlibrary{through}
\usetkzobj{all}
% make the proof label bold
\makeatletter
\renewenvironment{proof}[1][\proofname]{
\par\pushQED{\qed}\normalfont
\topsep6\p@\@plus6\p@\relax
\trivlist\item[\hskip\labelsep\bfseries#1\@addpunct{.}]
\ignorespaces
}{
\popQED\endtrivlist\@endpefalse
}
\makeatother
\numberwithin{equation}{section}
\newcolumntype{L}[1]{>{\raggedright\arraybackslash}p{#1}}
\def\OZ{\Omega_{\zeta}}
\def\AZT{A^{\zeta}(t)}
\def\AZN{A^{\zeta}(n)}
\def\MZT{M^{\zeta}(t)}
\def\MZDOT{M^{\zeta}(\cdot)}
\def\Ex{\mathbb{E}}
\def\FS{\mathcal{F}_s}
\def\FT{\mathcal{F}_t}
\def\QVT{\langle M^{\zeta} \rangle_t}
\def\QV{\langle M ^{\zeta} \rangle}
\def\TFLOOR{\left \lfloor{t}\right \rfloor}
\def\TCEIL{\left \lceil{t}\right \rceil}
\def\EMT{\mathcal{E}^{m}(t)}
\def\LLT{\mathcal{L}^{l}(t)}
\def\indicator{\boldsymbol{1}}
\def\mydot{\boldsymbol{\cdot}}
\tolerance=1000
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem*{remark}{Remark}
\begin{document}
\begin{titlepage}
\centering
\par\vspace{1cm}{\LARGE Universität Leipzig \par}
\vspace {0.3cm}
{\Large Fakultät für Mathematik und Informatik\par}
\vspace {0.3cm}
{\Large Mathematisches Institut \par}
\vspace {2.0cm}
{\huge\bfseries Logarithmic Fluctuations for Internal DLA
and Grid Brownian Motions
\par}
\vspace {5.0cm}
{\scshape\Large Diplomarbeit \par}
\vspace {0.6cm}
{ vorgelegt von \par}
\vspace {0.6cm}
{ \large Lennart Johannes Clausen \par}
\vspace {0.6cm}
{ am 05.05.2020
\par}
\vspace {0.6cm}
{Betreuer \par}
\vspace{0.6cm}
{Prof. Artem Sapozhnikov\par}
\vfill
\end{titlepage}
\thispagestyle{empty}
\begin{center}
\vspace{1cm}
\hspace{10pt}
\begin{abstract}
In my thesis I consider internal diffusion limited aggregation—a random growth model—on
the two-dimensional lattice.
With each step, a new particle starts in the origin and performs a random walk
until it hits an unoccupied lattice point, where it stops.
I am interested in the asymptotic growth of the occupied cluster.
Lawler, Bramson, and Griffeath \cite{lawler92} proved
that the asymptotic shape is a Euclidean ball.
This statement was remarkably improved by Jerison, Levine, and Sheffield \cite{jerison},
who showed that the fluctuations from circularity are of logarithmic order.
This result is subject of my thesis.
I give a thorough overview of the proof by filling in the omitted details. One of
the most technical steps that was left out in the paper and is filled in
in this thesis is an extension of the classical result that a harmonic
function of Brownian motion is a martingale to grid-harmonic functions
and grid Brownian motions.
\end{abstract}
\vfill
\end{center}
\newpage
\tableofcontents
\addtocontents{toc}{\protect\thispagestyle{empty}}
\pagenumbering{gobble}
\newpage
\clearpage
\pagenumbering{arabic}
\section{Introduction}
\subsection{Model and Result}
Internal diffusion limited aggregation (IDLA) is a growth model.
In this thesis we consider IDLA on $\mathbb{Z}^2$, which
inductively can be defined as follows:
at the beginning the IDLA cluster $A(n)$ only contains the origin.
In each step a simple random walk starting in the
origin is run until it reaches an unoccupied lattice point;
this point is then added to the cluster. To be more precise,
for independent simple random walks
$S^1$, $S^2$, $S^3$, ...
with start in $0$, let $A(0) = \{0\}$; for larger $n$, let
\begin{equation}\nonumber
A(n) = A(n-1) \cup \{S^{\,n}(\tau^n)\},
\end{equation}
where
\begin{equation}\nonumber
\tau^n = \inf \{ j \geq 0 \,|\, S^{\,n}(j) \notin A(n-1) \}.
\end{equation}
\begin{figure}[!htb]
\captionsetup{width=.9\linewidth}
\minipage{0.32\textwidth}
\includegraphics[width=\linewidth]{idla_40.png}
\endminipage\hfill
\minipage{0.32\textwidth}
\includegraphics[width=\linewidth]{idla_300.png}
\endminipage\hfill
\minipage{0.32\textwidth}
\includegraphics[width=\linewidth]{idla_1800.png}
\endminipage
\caption[placeholder]{IDLA clusters for n = 40, 300, and 1800. \footnotemark}
\end{figure}
\footnotetext{The code for all simulations and visualizations can be
found in the following repository:
\url{https://github.com/lennartCln/IDLA}}
By time $\pi r^2$ we expect the IDLA cluster to
have the approximate shape of the ball
$ \label{D: B_r} \nonumber B_r = \{x \in \mathbb{R}^2 \,:\, |x| < r \}$,
where $|\cdot|$ denotes the Euclidean norm.
The main result of this theses proves this asymptote
and furthermore shows that fluctuations away from the ball are logarithmic.
For real numbers $t \geq 0$ let $A(t) := A(\lceil t \rceil)$
and let $\mathbb{B}_r = B_r \cap \mathbb{Z}^2 \label{D: mathbb(B)_r}$.
With these definitions we can already state the main theorem.
\begin{theorem}[Logarithmic Fluctuations]
\label{log fluctuation}
For each $\gamma \geq 1$ there is an
\hbox{$a = a(\gamma) < \infty$}
and $r_0 = r_0(\gamma)$ such that
$$
\mathbb{P} \big( \{
\mathbb{B}_{r-a\ln r}
\subset A(\pi r^2) \subset \mathbb{B}_{r+a\ln r} \}
^c \big)
\leq r^{-\gamma},
$$
for all $r > r_0$.
\end{theorem}
Since $\sum_{r \in \mathbb{N}} r^{-\gamma}$ converges for
$\gamma > 1$,
Theorem \ref{log fluctuation} implies
(using Borel-Cantelli)
that almost surely there is just a finite number
of $r \in \mathbb{N}$ such that
$\mathbb{B}_{r - a \ln r} \not\subset A(\pi r^2)$
or $A(\pi r^2) \not\subset \mathbb{B}_{r+ a \ln r}$.
For the proof of Theorem \ref{log fluctuation},
I will follow Jerison, Levine, and Sheffield \cite{jerison}
and fill out the steps omitted in the paper.
\subsection{A Brief History of IDLA Shape Results}
The model was first proposed in chemical physics by
Meakin and Deutch \cite{meakinDeutsch} who already
questioned the smoothness of the boundary of the cluster.
Lawler, Bramson, and Griffeath \cite{lawler92} were
the first who identified the asymptotic shape (in every dimension)
as the trace of Euclidean balls.
More precisely, they proved that for $\epsilon > 0$ it is
\hbox{$\mathbb{B}_{r - \epsilon r}
\subset A(\pi r^2)
\subset \mathbb{B}_{r+\epsilon r}$},
almost surely
for $r$ sufficiently large.
Later, this result was better quantified by Lawler \cite{lawler95},
showing that the fluctuation from circularity is
(up to logarithmic factors) at most
$O(r^{1/3})$.
The latter result had not been
improved until
Asselah-Gaudillière \cite{gaudilliere}
and
Jerison-Levine-Sheffield \cite{jerison} independently obtained
that the fluctuation is bounded by $O(\log r)$.
Even though simulations \cite{levineSimulations}
indicate that the fluctuation is of logarithmic order,
proving that they are of no smaller order
is still an open problem. The best lower bound on
the fluctuation for IDLA so far is $O(\sqrt{ \log r})$, see \cite{asselah2011lower}.
IDLA has been used to understand
anodic polishing \cite{meakinDeutsch};
two dimensional IDLA has been studied
as a model for viscous fluid displacement in
porous media \cite{PatersonFluids,ChaoTangFluids}
and for the diffusion of oil and water particles
\cite{CandelleroWater}.
This thesis is restricted to the two dimensional case.
When the dimension $d$ is larger than or
equal to three, Jerison-Levin-Sheffield \cite{jerison} and
Asselah-Gaudillière \cite{gaudilliereSublog}
showed even smaller fluctuations, namely
\hbox{$\mathbb{B}_{r-C \sqrt{\log r}}
\subset A(\omega_d r^d) \subset
\mathbb{B}_{r+\sqrt{\log^2 r}}$}, where
$\omega_d$ is the volume of
the $d$-dimensional Euclidean ball of radius $1$.
Recent work analysed the shape of more complex cases than
clusters based on the simple random walk on
$\mathbb{Z}^d$, such as IDLA on the cylinder lattice \cite{JLScylinders},
comb lattices \cite{HussChomb}, and
supercritical percolation clusters \cite{percolationClusters}.
\subsection{Early and Late Points}
We reformulate Theorem \ref{log fluctuation}
in terms of early and late points.
We would expect a lattice point
$z$ to join the IDLA cluster at time
$\pi |z|^2$. With that in mind, we call $z$ to be
$m$-early if $z$ joins the cluster at the time
where we would expect the shape of the cluster
being $\mathbb{B}_{|z|-m}$; more precisely,
$z \in \mathbb{Z}^2$ is \hbox{\textbf{$m$-early}} if
$z \in A(\pi(|z|-m)^2)$.
Let
$E^m_z = \{z \in A(\pi(|z|-m)^2)\}
\label{D: z is m early}$ denote the event
that $z$ is $m$-early, then let
\begin{equation}\label{D: def E_m(T)}
\nonumber
\mathcal{E}^m(T) =
\bigcup_{z \in A(T)} E^m_z
\end{equation}
be the event that up to time $T$
there was an $m$-early point in the cluster.
Similarly, we call $z \in \mathbb{Z}^2$ to be
\textbf{$l$-late} if
\hbox{$z \notin A(\pi (|z| + l)^2)$.}
By $L^l_z \label{D: z is l late}$
denote the event of $z$ being $l$-late. Let
\begin{equation}\label{D: L_l(T)}
\mathcal{L}^l(T) =
\bigcup_{z \in \mathbb{B}_{\sqrt{T/\pi} -l}}
L^l_z
\end{equation}
be the event that there was an $l$-late point up to time $T$.
To divide the problem of bounding the fluctuation into the
problems of bounding the event of single early/late
points, we state
\begin{lemma}[No log-early/late point implies logarithmic fluctuation]
\label{L: logarithmic fluctuation in terms of late and early points}
For Theorem \ref{log fluctuation}
it is sufficient to show that
for each $\gamma$ there is an $a= a(\gamma)$
such that for all $r$ sufficiently large there are
$l$, $m < a \ln r$ such that
\begin{equation}\nonumber
\mathbb{P} \big( \mathcal{L}^l(T)\big)
+\mathbb{P} \big( \mathcal{E}^m(T)\big)
\leq r^{-\gamma}.
\end{equation}
\end{lemma}
\begin{remark}
Late points quantify the inner error,
$r - \inf \{|z| : z \notin A(\pi r^2) \}$,
i.e., the largest deviation of $A(\pi r^2)$
from $B_r$ to the inside, and early points target the outer error,
$\sup \{|z| : z \in A(\pi r^2) \} - r$.
Note that $\mathcal{L}^l(T)$ and $\mathcal{E}^m(T)$
are monotonically decreasing in $l$ and $m$
(since $L^l_z \supset L^{l+1}_z$, $E^m_z \supset E^{m+1}_z$).
\end{remark}
\begin{figure}[H]
\centering
\captionsetup{width=.9\linewidth}
\begin{subfigure} {0.85 \textwidth}
\includegraphics[width=\linewidth]{idla_5001.png}
\end{subfigure}
\\
\begin{subfigure}{0.7\textwidth}
\includegraphics[width=\linewidth]{scale.png}
\end{subfigure}
\caption{Early (blue) and late (red)
points of a sample of an IDLA cluster at time $5000$.
Points $z \in \mathbb{Z}^2$ joining the IDLA cluster
at time about $\pi |z|^2$ are colored in gray.
No point is earlier than $3$-early
or later than $3$-late.
See Figure \ref{F: histo IDLA 5000} in Section \ref{sec: high level proof of log fluct}
for a histogram of early and late points.}
\label{F: IDLA 5000}
\end{figure}
\begin{proof}
[Proof of Lemma \ref{L: logarithmic fluctuation in terms of late and early points}]
It is
\begin{equation}\label{eq: early points as a union}
\begin{split}
\mathcal{E}^m(T) &=
\bigcup_{z \in A(T)}
\big{\{}z \in A(\pi(|z|-m)^2)\big{\}}\\
&= \bigcup_{z \in A(T)}
\;\; \bigcup_{n \leq \pi(|z|-m)^2}
\{z \in A(n)\}\\
&= \bigcup_{n \leq T}
\Big{\{}\text{there is a}
\;z : z \in A(n) \;\;
\text{and}\;\;
z \notin \mathbb{B}_{\sqrt{n/ \pi}+m}
\Big{\}}\\
&= \bigcup_{n \leq T}
\Big{\{} \mathbb{B}_{\sqrt{n/ \pi}+m}
\not\supset A(n) \Big{\}},
\end{split}
\end{equation}
similarly,
\begin{equation}\nonumber
\mathcal{L}^l(T)
= \bigcup_{n \leq T}
\Big{\{} \mathbb{B}_{\sqrt{n/\pi} -l}
\not\subset A(n) \Big{\}}.
\end{equation}
Therefore, using the monotonicity of $\mathcal{L}^l(T)$
and $\mathcal{E}^m(T)$ in $l$ and $m$,
we get for $T = \pi r^2$ and
$l, \, m < a \ln r$,
\begin{equation}\nonumber
\begin{split}
\mathbb{P}& \big(
\mathbb{B}_{r - a \ln r} \not\subset A(T)
\;\; \text{or} \;\;
A(T) \not\subset \mathbb{B}_{r+a \ln r}\big)\\
&\leq \mathbb{P} \big( \mathbb{B}_{r-l} \not\subset A(T)\big)
+ \mathbb{P} \big( A(T) \not\subset \mathbb{B}_{r+m} \big)\\
&\leq \mathbb{P} \big( \mathcal{L}^l(T)\big)
+\mathbb{P} \big( \mathcal{E}^m(T)\big).
\end{split}
\end{equation}
\end{proof}
\subsection{Proof Sketch}
Lemma \ref{L: logarithmic fluctuation in terms of late and early points}
implies that in order to prove Theorem \ref{log fluctuation}
it suffices to show that $l$-late and $m$-early points
are unlikely for $l$ and $m$ of logarithmic order.
Here, I will briefly sketch the proof of this statement.
For readability in text passages I often refer to probabilities of events as if
they were boolean expressions.
\\~\\
We define the \textbf{grid} $\mathcal{G}$ by,
\begin{equation}
\label{D: grid}
\mathcal{G} := \{x+iy \,|\,
x \in \mathbb{Z} \; \text{or} \; y \in \mathbb{Z}\} \subset \mathbb{C}.
\end{equation}
On the grid we define in Section \ref{sec: grid BM} a continuous process
which we call grid Brownian motion and for integer times behaves
like a random walk on $\mathbb{Z}^2$ (as a subset of $\mathcal{G}$);
for intermediate times it behaves like a one
dimensional Brownian motion on the edges of $\mathcal{G}$.
Furthermore, we will give a definition of harmonicity on the grid
(see Section \ref{sec: grid-harmonic functions}) and prove
that a function of grid Brownian motion is also a martingale if
the function is grid harmonic (see Theorem \ref{harmonic function of grid BM}).
This result for grid-harmonic functions is analogous to
the fact that harmonic functions applied to Brownian motions are martingales.
For $\zeta \in \mathbb{Z}^2$ we will define
a function $H^{\zeta}$ on the grid, see \eqref{D: H zeta}, which
is grid harmonic and approximates the discrete Poisson kernel for the ball $\mathbb{B}_{|\zeta|}$.
Moreover is $H^{\zeta}$ close to the continuum Poisson kernel for
the ball $B_{|\zeta|}$ (Lemma \ref{L: H close to F}).
We will derive some properties of $H^{\zeta}$
such as an approximate mean-value property (see Lemma \ref{Properties of H} (f))
from the continuum Poisson kernel.
We will define the grid IDLA (see Section \ref{sec: grid idla}),
whose underlying particles are grid Brownian motions with similar
stopping rules as the particles (random walks) of the IDLA. Hence, for integer times
the grid IDLA behaves like the IDLA.
Our main tool is the process $M^{\zeta}$, which is defined by the values of
$H^{\zeta}$ on the particles of the grid IDLA
(see Section \ref{sec: define the martingale}).
Since $H^{\zeta}$ is grid harmonic and since the underlying particles
of the grid IDLA are grid Brownian motions (and therefore continuous),
we can conclude that $M^{\zeta}$ is a continuous martingale (see Lemma \ref{lemma M : martingale}).
Hence, we can represent $M^{\zeta}$ by a time-changed Brownian
motion (using Theorem \ref{theorem DDS}).
Applying this outcome and a bound on large deviations of
Brownian motions (Lemma \ref{Exponential Inequality}), we can conclude that
the deviation of $M^{\zeta}$ is unlikely to be large while
its quadratic variation is small (Lemma \ref{Small QV implies small martingale}).
Analyzing the behavior of $M^{\zeta}$ and its
quadratic variation on the event of early and late points
near $\zeta$ will be the next aim.
If we choose $\zeta$ outside the ball $\mathbb{B}_r$
(from which we want to measure the fluctuations of \hbox{$A(T)$}, for $T = \pi r^2$),
then $M^{\zeta}$ is large on the event of an early point near $\zeta$ and no late point
(see \eqref{eq: bound M on Q}).
For this implication, we use that close to an early point there are many points part of the IDLA cluster
(see Section \ref{sec: no thin tentacles}) and that $H^{\zeta}$ is large near $\zeta$ (Lemma \ref{Properties of H}).
In addition, on the same event the quadratic variation is small (see \eqref{eq: bound QV on Q}).
According to Lemma \ref{Small QV implies small martingale}, however,
the quadratic variation is large if the martingale is large, i.e.,
the event —an early point but and no late point— is unlikely to occur;
in other words: early points imply late points (see Lemma \ref{Early Points Imply Late Points}).
Under assistance of the same tools we will prove that late points imply early points
(Lemma \ref{Late Points Imply Early Points}).
If we choose $\zeta$ inside $\mathbb{B}_r$ and $\zeta$ is a late point,
then no particle reaches $\zeta$.
Hence, and by the mean-value property of $H^{\zeta}$,
the martingale $M^{\zeta}$ is small (large deviation).
If in addition there is no early point, then
its quadratic variation is large (Lemma \ref{No early point then small QV 2}).
Again, the result—late points imply early points—follows since
by Lemma \ref{Small QV implies small martingale} the deviation of the martingale $M^{\zeta}$
cannot be large while its quadratic variation is small.
Lemma \ref{Early Points Imply Late Points} and \ref{Late Points Imply Early Points}
are the key ingredients for the final step
of the proof of the main result (provided by Section \ref{Sec: Proof Lof Fluctuation}),
iterating alternatingly the contraposition of Lemma \ref{Early Points Imply Late Points}
(i.e., no late point implies no early point)
and Lemma \ref{Late Points Imply Early Points}
(i.e., no early point implies no late point).
We will recursively define sequences $l_i$ and $m_i$ starting
with $l_0$ being of order $\sqrt{T}$.
Then Lemma \ref{No Very Late Point} (an a priori bound on the event of
the absence of $\sqrt{T}$-late points) implies
that there is no $l_0$-late point by time $T$.
Choosing $m_0$ to be $l_0$ up to a multiplicative constant,
Lemma \ref{Early Points Imply Late Points}
(no $l_0$-late points imply no $m_0$-early points) gives us
the absence of $m_0$-early points by time $T$.
Similarly, we can conclude from Lemma \ref{Late Points Imply Early Points}
(no $m_0$-early point implies no $l_1$-late point) that there is no
$l_1$-late points by time $T$ if we choose $l_1$ to be approximately $\sqrt{m_0}$.
By this choice $l_1$ is smaller than $l_0$, i.e., even less late points are unlikely.
Hence, if we keep on assigning $l_i$ and $m_i$ according to these rules
(see also \eqref{eq: def of l_i, m_i}),
we obtain decreasing sequences for which there are no $l_i$-late and $m_i$-early points.
The assumptions of Lemma \ref{Early Points Imply Late Points} or \ref{Late Points Imply Early Points}
are fulfilled for $m_i$ or $l_i$ being larger than $\ln T$.
Therefore, we stop the iteration when reaching this threshold
and we end up with $l$ and $m$ being of order $\ln T$.
According to Lemma \ref{L: logarithmic fluctuation in terms of late and early points}
this is what we needed to show.
\section{Preliminaries}
\subsection{Brownian Motions}
Let $\mathcal{B}(t)$, $t \geq 0$ be a standard Brownian motion
starting in the origin, and by
$\tau_{(a,b)} = \inf\{s \geq 0 \,|\,\mathcal{B}(s) \notin (a,b)\}$
denote its exit time from the interval $(a,b)$.
Lemma \ref{exit times of BM} provides
an upper bound for this exit time and
\hbox{Lemma \ref{Exponential Inequality}} bounds large deviations of $\mathcal{B}$.
In Section \ref{sec: Martingales} and \ref{sec: Proof QV Bounds}
we will use these lemmas to bound martingales,
which will be represented by Brownian motions.
\begin{lemma}[Exit times of Brownian motions]
\label{exit times of BM}
Let $0 < d \leq c$ and $\lambda > 0$ with
\hbox{$\sqrt{\lambda}(c+d) \leq \frac{3}{\sqrt{2}}$},
then
$$
\Ex \big( e^{\lambda \tau_{(-d,c)}} \big)
\leq 1 + 20 \lambda c d.
$$
\end{lemma}
\begin{proof}
The first part of the proof follows the idea
of \cite{revuz}, Ch. II, Prop. 3.7. The estimations
of the second part follow Lemma 5 in \cite{jerison}.
Obtain that for a standard Brownian motion $\mathcal{B}(t)$
started in $0$,
\begin{equation}\nonumber
M^s(t) :=
\exp
\Big( i s \Big(
\mathcal{B}(t) - \frac{c-d}{2} \Big) +
\frac{s^2}{2}t \Big)
\end{equation}
is a (complex) martingale. Hence, the same holds true for
\begin{equation}\nonumber
N^s(t) :=
\frac{1}{2} \big( M^s(t) + M^{-s}(t) \Big)
= \exp ( t \,s^2 /2 )
\cdot \cos \Big(
s \Big( \mathcal{B}(t) - \frac{c-d}{2}\Big) \Big).
\end{equation}
Since $N^s(t \land \tau_{(-d,c)})$ is bounded by
$\exp ( c s^2 /2)$, it is uniformly integrable.
Therefore, if $s \in [0, \pi (c+d)^{-1})$,
it is by optional sampling theorem (\cite{revuz}, Ch. II, Cor. 3.6),
\begin{equation}\nonumber
\begin{split}
\Ex &\big( \exp
\big( \tau_{(-d,c)} \, s^2 / 2 \big) \big)\\
& = \Ex \Big(
\exp \big( \tau_{(-d,c)}\, s^2 /2 \big)
\cdot \cos \Big(
s \Big( \mathcal{B}(\tau_{(-d,c)}) -
\frac{c-d}{2} \Big) \Big) \Big)
\cdot \Big( \cos s \frac{c+d}{2} \Big)^{-1} \\
& = \Ex \big( N^s(\tau_{(-d,c)}) \big)
\cdot \Big( \cos
s \frac{c+d}{2} \Big)^{-1}\\
& = \Ex \big( N^s(0) \big)
\cdot \Big( \cos s \frac{c+d}{2} \Big)^{-1}\\
& = \Big(\cos s \frac{c-d}{2} \Big)
\cdot \Big(\cos s \frac{c+d}{2} \Big)^{-1}\\
& = \cos(s a)
\cdot \cos (s b)^{-1},
\end{split}
\end{equation}
where in the last equation we defined
$a = \frac{c-d}{2}$, $b = \frac{c+d}{2}$.
Cosine is decreasing and concave on $[0,\frac{\pi}{2}]$; as a result, we have
$$
\cos y - \cos x \geq (y-x) \cos 'y,
$$
for $0 \leq x \leq y \leq \frac{\pi}{2}$.
Hence, for $0 \leq s a \leq s b \leq \frac{\pi}{2}$ the estimation
$$
\cos(s a) \leq
\cos(s b) + s(b-a)
\sin(s b)
$$
provides
$$
\cos(s a)
\cdot \cos (s b)^{-1}
\leq 1 + s(b-a) \tan (s b).
$$
Thus, using $\tan x < 10x$, for $0 < x \leq \frac{3}{2}$,
\begin{equation}
\begin{split}
\cos(s a)
\cdot \cos (s b)^{-1}
& \leq 1 + 10 s^2 b(b-a) \\
& \leq 1 + 10 s^2 (b-a)(b+a)\\
& = 1 + 20 \lambda c d, \nonumber
\end{split}
\end{equation}
for $0 \leq \sqrt{\lambda} (c-d)
\leq \sqrt{\lambda}(c+d)
\leq \frac{3}{\sqrt{2}}$.
\end{proof}
\begin{lemma}[Exponential inequality]
\label{Exponential Inequality}
For $a \geq 0$, it is
$$
\mathbb{P} \bigg( \sup_{s \in [0,t]}
\mathcal{B}(s) \geq at \bigg)
\leq e^{-a^2 t / 2}.
$$
\end{lemma}
The proof is an application of Doob's $L^1$-inequality
(\cite{revuz}, Ch. II, Theorem 1.7)
to the martingale $M^{\alpha}(t) =
\exp \big(\alpha \mathcal{B}(t) - \frac{\alpha^2}{2}t \big)$.
The detailed proof can be found in \cite{revuz}, Ch. II, Prop. 1.8.
\subsection{Martingales}
\label{sec: Martingales}
In this section, we collect some properties of martingales
useful for this thesis.\\~\\
In what follows, we let $X(t)$, $t\geq 0$ be a real-valued process;
$(\Omega, \mathcal{F}, \mathbb{P})$ a probability space
and $\mathcal{F}_t$ a filtration of $\mathcal{F}$.
If $X(t)$ is adapted to $\mathcal{F}_t$ and
\begin{itemize}
\item $\Ex (|X(t)|) < \infty$ for every $t \geq 0$ and
\item $\Ex( X(t) \,|\, \mathcal{F}_s) = X(s)$ a.s. for all $0\leq s < t$,
\end{itemize}
then $X$ is a \textbf{martingale} (w.r.t. $\mathcal{F}_t$).
In order to define the quadratic variation of $X$,
let $\Delta$ be a subdivision of the interval
$[0,t]$ with $0 = t_0 < t_1 < ... < t_n = t$
and denote the modulus of $\Delta$ by
$|\Delta| = \sup_i | t_{i} - t_{i-1} | \label{D: modulus of subdicison}$.
We set
\begin{equation}\nonumber
T^{\Delta}_t = \sum_{i=1}^n \big( X(t_{i+1}) - X(t_i) \big)^2.
\end{equation}
We say $X$ is of finite quadratic variation if there exists
a process $\langle X,X \rangle$ such that for every sequence
$\Delta_i$ of subdivisions of $[0,t]$ with
$|\Delta_i| \rightarrow 0$ as $i \rightarrow \infty$,
\begin{equation}\label{D: QV}
\nonumber
\lim_{i \rightarrow \infty}
\mathbb{P} (|T^{\Delta_i}_t - \langle X,X \rangle_t| > \epsilon) = 0,
\end{equation}
for every $\epsilon > 0$.
The process $\langle X,X \rangle_t$ (sometimes $\langle X \rangle_t$)
is called the \textbf{quadratic variation} (QV) of $X$.
The following lemma enables us to represent any martingale
with divergent quadratic variation as a time-changed Brownian motion.
\begin{theorem}[Dambis Dubins-Schwarz]
\label{theorem DDS}
Let $M(\mydot)$ be an a.s. continuous $\mathcal{F}_t$-martingale,
which vanishes at time $0$ and with
$\langle M \rangle _{\infty} = \infty$. Set
\begin{equation}
T_t = \inf \{ s \geq 0 \,|\,
\langle M \rangle _s > t \}.
\nonumber
\end{equation}
Then $\mathcal{B}(t) := M(T_t)$
is a Brownian motion adapted to $\mathcal{F}_t$ and, vice versa,
$M(\mydot)$ can be represented as
\begin{equation}\nonumber
M(t) = \mathcal{B}( \langle M \rangle_t).
\end{equation}
\end{theorem}
\begin{proof}
\renewcommand{\qedsymbol}{}
I will only sketch the two key arguments of the
proof. For the complete proof I refer to
\cite{revuz}, Ch. V, Theorem 1.6.
For the time change $T_t$, $t\geq 0$ and the martingale
$M$ the assumptions for \cite{revuz}, Ch. V, Prop. 1.5
are fulfilled. It states that the quadratic variation
of the time-changed process $M_{T_{\bullet}}$
equals the time-changed quadratic variation process of $M$. Hence,
\begin{equation}\nonumber
\langle \mathcal{B} \rangle _t
= \langle M_{T_{\bullet}} \rangle _t
= \langle M \rangle _{T_t}
= t.
\end{equation}
Then, by Lévy's characterization theorem (\cite{revuz}, Ch. IV, Theorem 3.6)
$\mathcal{B}$ is a $\mathcal{F}_{T_t}$-Brownian motion.
\end{proof}
Combining Theorem \ref{theorem DDS} with Lemma \ref{Exponential Inequality}
leads to the following large deviation bound for martingales.
\begin{lemma} [Small QV implies small martingale]
\label{Small QV implies small martingale}
Let $M(t)$, $t \geq 0$ be a continuous martingale,
which fulfills the assumptions of Theorem \ref{theorem DDS}.
Then,
$$
\mathbb{P} \big( M(t) \geq l, \;
\langle M \rangle _t \leq k \big)
\leq e^{-l^2/(2k)}
$$
and
$$
\mathbb{P} \big( M(t) \leq -l, \;
\langle M \rangle _t \leq k \big)
\leq e^{-l^2/(2k)},
$$
for all $0 < l, \, k$.
\end{lemma}
In words, if the QV of a martingale
remains small, then a large deviation of the martingale itself is unlikely.
Or at the level of the time-changed BM $\mathcal{B}$:
if the time $\langle M \rangle_t$ elapses slow, then it is unlikely that
$\mathcal{B}({\langle M \rangle_t})$ is large.
\begin{proof}
By Theorem \ref{theorem DDS} there
is a Brownian motion $\mathcal{B}(t)$ such that
$M(t) = \mathcal{B}(\langle M \rangle_t)$.
Hence,
\begin{equation}\nonumber
\begin{split}
\mathbb{P}( M(t) \geq l, \;
\langle M \rangle _t \leq k)
& = \mathbb{P}(
\mathcal{B}(\langle M \rangle_t)
\geq l, \;
\langle M \rangle _t \leq k) \\
& \leq \mathbb{P} \bigg(
\sup _{s \in [0,k]}
\mathcal{B}(s) \geq l \bigg)\\
& \leq e^{- l^2/(2k)}.
\end{split}
\end{equation}
The second inequality of the lemma
follows from the first
with the observation
$\langle -M \rangle _t = \langle M \rangle _t$.
\end{proof}
\subsection{Discrete Potential Theory}
\label{sec: discrete potential theory}
In this section, we will define the potential kernel,
which will be used in
Section \ref{sec: define H} (approximating discrete Poisson kernel)
to define a specific harmonic function.
In Lemma \ref{L: properties of a}, we give a
general estimate for the potential kernel and
compute some specific values. \\~\\
Consider $\mathbb{Z}^2$ as a subset of $\mathbb{C}$
and denote $V = \{1, -1, i, -i\} \label{D: V}$.
The two dimensional \textbf{simple random walk} $S(n)$
starting in $0$ can be defined
as a Markov chain with state space $\mathbb{Z}^2$,
start $S(0) = 0$, and transition probabilities
\begin{equation}
\label{D: random walk}
\nonumber
\mathbb{P}\big( S(n+1) = z \, \big| \, S(n) = y \big) = \frac{1}{4},
\;\;\;\text{for}\;\; z-y \in V.
\end{equation}
For $A \subset \mathbb{Z}^2$ let
$$
\partial_o A = \{z \in \mathbb{Z} ^2 \setminus A \, | \,
z - y \in V, \;\; \text{for some } y \in A \}
$$
denote the \textbf{outer boundary} of $A$
and $\bar{A} := A \cup \partial_o A$ the
\textbf{discrete closure} of $A$.
For a function $g: \bar{A} \rightarrow \mathbb{R}$
denote the \textbf{discrete Laplacian} $\Delta$ by
\begin{equation}
\label{D: discrete Lapacian}
\nonumber
\Delta g (z) =
\sum_{v \in V} \frac{1}{4} g(z + v) - g(z),
\end{equation}
for $z \in A$.
The function $g : \bar{A} \rightarrow \mathbb{R}$
is called \textbf{harmonic} in $A$
(with respect to the simple random walk) if
\begin{equation}\label{D: discrete harmonic}
\Delta g (z) = 0,
\end{equation}
for all $z \in A$.
\begin{remark}
For such a function $g$ and a random walk $S(n)$
the process \hbox{$Y(n)=$} \hbox{$g((n \land \tau_A))$}
is a martingale (by a direct calculation; see for instance \cite{lawler} Prop 6.1.1),
where \mbox{$\tau_A$} denotes the exit time of $S(n)$ from $A$.
\end{remark}
Define the \textbf{potential kernel}
$a: \mathbb{Z}^2 \rightarrow \mathbb{R}_{\geq 0}$
by
\begin{equation}\label{D: a}
a(z) = \sum_{n=0}^{\infty}
\big( \mathbb{P}(S(n) = 0) - \mathbb{P}(S(n) = z) \big).
\end{equation}
\begin{remark}
The convergence of $a(z)$ clearly holds
in the transient case; in two dimensions
\cite{spitzer}, Ch. 12, Prop. 1 proves the convergence.
Moreover, \hbox{$2a(x - y)$} is equal to the expected number
of visits of $x \in \mathbb{Z}^2$ by a random
walk started in $x$ before hitting
$y \in \mathbb{Z}^2$, which we can obtain from
\cite{lawler} Proposition 4.6.3 and the translation invariance of the random walk.
\end{remark}
\begin{lemma}[Properties of $a$]
\label{L: properties of a}
The potential kernel $a(\mydot)$
\begin{itemize}
\item[(a)] is harmonic everywhere except $0$,
\begin{equation} \nonumber
\Delta a (z)
= \delta_0(z) =
\begin{cases}
1,\; z = 0\\
0,\; z \neq 0,
\end{cases}
\end{equation}
\item[(b)] can be precisely estimated by
\begin{equation}\nonumber
a(z) = \frac{2}{\pi} \ln |z| + \lambda + O(|z|^{-2}),
\end{equation}
for a constant $\lambda > 0$,
\item[(c)] is invariant under the dihedral symmetries,
i.e., for all $z \in \mathbb{Z}^2$,
\begin{equation}
\nonumber
a(z) = a(-i\bar{z}) =
a(i z) =a(\bar{z}) =a(-\bar{z})
=a(-i z)=a(i \bar{z})=a(-z).
\end{equation}
\item[(d)]
$a(0) = 0, \;\;\; a(1) = 1, \;\;\text{and} \;\;\; a(1+i) = \frac{4}{\pi}.$
\item[(e)] is subadditive, i.e., for all $x, y \in \mathbb{Z}^2$ it is
\begin{equation}\nonumber
a(x+y) \leq a(x) + a(y).
\end{equation}
\end{itemize}
\end{lemma}
\begin{proof}
\begin{itemize}
\item[(a)]
Using the notation
$p^n(z) := \mathbb{P}(S(n) = z)$,
we have
\begin{equation}\nonumber
\Delta ( p^n(0) - p^n(z) ) = p^n(z) - p^{n+1} (z),
\end{equation}
for all $z \in \mathbb{Z}^2$.
Hence,
\begin{equation}\nonumber
\begin{split}
\Delta a(z) &=
\lim_{n \rightarrow \infty} \sum_{i=1}^n
\Delta \big(p^i(0) - p^i(z) \big)\\
& = \lim_{n \rightarrow \infty} \sum_{i=1}^n
\Delta \big(p^i(z) - p^{i+1}(z) \big)\\
& = \lim_{n \rightarrow \infty} p^0(z) - p^{n+1}(z) \\
& = p^0(z) = \delta_0.
\end{split}
\end{equation}
\item[(b)]
This statement was first proven by Stöhr \cite{Stoer}
(for a more comprehensible proof see \cite{kozma}).
Both use the following explicit integral representation of $a(\mydot)$,
which appears as Prop. 4.4.3 in \cite{lawler},
\begin{equation}\label{eq:rep_of_a}
a(x) = (2\pi)^{-2}
\int_{[-\pi, \pi]^2}
\frac{1-\cos x \cdot \theta}
{1-\phi(\theta)} d \theta,
\end{equation}
where $\phi(\theta) = (\cos \theta_1 + \cos \theta_2)/2$
denotes the characteristic function of the
simple random walk in $\mathbb{Z}^2$.
This equality can be used to derive the result.
\item[(c)] This follows immediately from the symmetry properties of
\hbox{$\mathbb{P}(S(n) = z)$.}
\item[(d)] By definition it is $a(0) = 0$.
With $z = 0$ in (a) we obtain
\begin{equation}\nonumber
a(1) = 1.
\end{equation}
The next calculation follows Chapter 15 of \cite{spitzer}.
By \eqref{eq:rep_of_a} and the addition formula,
\begin{equation}\nonumber
\begin{split}
a(1+i)
&= \frac{1}{(2\pi)^2} \int_{[-\pi, \pi]^2}
\frac{1-\cos(\theta_1 + \theta_2)}
{1-(\cos \theta_1 + \cos \theta_2)/2}
d \theta\\
&= \frac{1}{(2\pi)^2} \int_{[-\pi, \pi]^2}
\frac{1-\cos(\theta_1 + \theta_2)}
{1-\Big( \cos \Big( \frac{\theta_1+\theta_2}{2}\Big)
\cos \Big( \frac{\theta_1 - \theta_2}{2} \Big) \Big)} \,
d \theta.
\end{split}
\end{equation}
With the transformation
$x = (\theta_1 + \theta_2)/2$,
$y = (\theta_1 - \theta_2)/2$ and
the symmetry properties of the integrand we can conclude
\begin{equation}\nonumber
\begin{split}
a(1+i) &=
\frac{1}{2 \pi^2}
\int_{\{|x|+|y| \leq \pi\} }
\frac{1-\cos 2 x}
{1 - \cos x \cos y } d(x,y)\\
&= \frac{1}{4 \pi^2}
\int_{[-\pi, \pi]^2}
\frac{1-\cos 2 x}
{1 - \cos x \cos y } d(x,y)\\
&= \frac{2}{\pi}
\int_{-\pi}^{\pi}
\frac{1-\cos 2 x}{|\sin x|}
d x\\
&= \frac{1}{\pi}
\int_{-\pi}^{\pi}
\frac{(\sin x)^2}{|\sin x|} d x
= \frac{4}{\pi}.
\end{split}
\end{equation}
\item[(e)]
Fix $y\in \mathbb{Z}^2$ and define $g(x)= a(x+y)-a(x)$.
By (a), $g$ is harmonic everywhere except in $0$ and $-y$.
By maximum principle $g$ attains its maximum in $0$ or $-y$;
since $g(-y) = - a(y) \leq a(y) = g(0)$, it attains its maximum
in $0$, i.e., for all $x,y \in \mathbb{Z}^2$,
\begin{equation*}
a(y) = g(0) \geq g(x) = a(x+y) + a(x).
\end{equation*}
\end{itemize}
\end{proof}
\begin{remark}
By Lemma \ref{L: properties of a} (c), which
describes the symmetries of the potential kernel,
it suffices to compute $a(\mydot)$ for all $z \in \mathbb{Z}^2$ with
$0 \leq \text{Im}(z) \leq \text{Re}(z)$.
It is still
costly to compute explicit values of $a(\mydot)$.
McCrea-Whipple \cite{mccrea_whipple_1940}
were the first who computed a large number of values of $a(\mydot)$.
\end{remark}
\subsection{Potential Theory in Continuum}
The main goal of this section is to bound the
Poisson kernel for the ball (Lemma \ref{L: F on B_zeta+14C}).
The Poisson kernel is harmonic in the ball.
Hence, we may apply some general statements
about harmonic functions which we state first.
\subsubsection{Harmonic Analysis}
For $U \subset \mathbb{R}^2$ open,
define the \textbf{Laplacian} $\Delta$ of a $C^2$ function
$u : U \rightarrow \mathbb{R}$ by