-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmpu9250.py
218 lines (196 loc) · 9.5 KB
/
mpu9250.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# mpu9250.py MicroPython driver for the InvenSense MPU9250 inertial measurement unit
# Authors Peter Hinch, Sebastian Plamauer
# V0.5 17th June 2015
'''
mpu9250 is a micropython module for the InvenSense MPU9250 sensor.
It measures acceleration, turn rate and the magnetic field in three axis.
The MIT License (MIT)
Copyright (c) 2014 Sebastian Plamauer, [email protected], Peter Hinch
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
'''
from .imu import MPU6050, bytes_toint, MPUException
from .vector3d import Vector3d
class MPU9250(MPU6050):
'''
MPU9250 constructor arguments
1. side_str 'X' or 'Y' depending on the Pyboard I2C interface being used
2. optional device_addr 0, 1 depending on the voltage applied to pin AD0 (Drotek default is 1)
if None driver will scan for a device (if one device only is on bus)
3, 4. transposition, scaling optional 3-tuples allowing for outputs to be based on vehicle
coordinates rather than those of the sensor itself. See readme.
'''
_mag_addr = 12 # Magnetometer address
_chip_id = 113
def __init__(self, side_str, dev_pin=(15, 4), device_addr=None, transposition=(0, 1, 2), scaling=(1, 1, 1)):
super().__init__(side_str, dev_pin, device_addr, transposition, scaling)
self._mag = Vector3d(transposition, scaling, self._mag_callback)
self.accel_filter_range = 0 # fast filtered response
self.gyro_filter_range = 0
self._mag_stale_count = 0 # MPU9250 count of consecutive reads where old data was returned
self.mag_correction = self._magsetup() # 16 bit, 100Hz update.Return correction factors.
self._mag_callback() # Seems neccessary to kick the mag off else 1st reading is zero (?)
def enable_irq_mode(self, level=0x22, freq=0x03):
self.filter_range = 1 # set accel lpf to 184Hz
self._write(0x40, 0x38, self.mpu_addr) # enable motion interrupt
self._write(0xC0, 0x69, self.mpu_addr) # enable accel hardware intelligence
self._write(level, 0x1F, self.mpu_addr) # motion threshold: 1~255 LSBs (0~1020mg)
self._write(freq, 0x1E, self.mpu_addr) # motion frequency: [3:0] = 0.24Hz ~ 500Hz
self._write(0x21, 0x6B, self.mpu_addr) # enable cycle mode (Accel Low Power Mode)
def disable_irq_mode(self):
self._write(0x00, 0x69, self.mpu_addr) # disable accel hardware intelligence
self._write(0x01, 0x6B, self.mpu_addr) # enable sensor
@property
def sensors(self):
'''
returns sensor objects accel, gyro and mag
'''
return self._accel, self._gyro, self._mag
# get temperature
@property
def temperature(self):
'''
Returns the temperature in degree C.
'''
try:
self._read(self.buf2, 0x41, self.mpu_addr)
except OSError:
raise MPUException(self._I2Cerror)
return bytes_toint(self.buf2[0], self.buf2[1])/333.87 + 21 # I think
# Low pass filters
@property
def gyro_filter_range(self):
'''
Returns the gyro and temperature sensor low pass filter cutoff frequency
Pass: 0 1 2 3 4 5 6 7
Cutoff (Hz): 250 184 92 41 20 10 5 3600
Sample rate (KHz): 8 1 1 1 1 1 1 8
'''
try:
self._read(self.buf1, 0x1A, self.mpu_addr)
res = self.buf1[0] & 7
except OSError:
raise MPUException(self._I2Cerror)
return res
@gyro_filter_range.setter
def gyro_filter_range(self, filt):
'''
Sets the gyro and temperature sensor low pass filter cutoff frequency
Pass: 0 1 2 3 4 5 6 7
Cutoff (Hz): 250 184 92 41 20 10 5 3600
Sample rate (KHz): 8 1 1 1 1 1 1 8
'''
if filt in range(8):
try:
self._write(filt, 0x1A, self.mpu_addr)
except OSError:
raise MPUException(self._I2Cerror)
else:
raise ValueError('Filter coefficient must be between 0 and 7')
@property
def accel_filter_range(self):
'''
Returns the accel low pass filter cutoff frequency
Pass: 0 1 2 3 4 5 6 7 BEWARE 7 doesn't work on device I tried.
Cutoff (Hz): 460 184 92 41 20 10 5 460
Sample rate (KHz): 1 1 1 1 1 1 1 1
'''
try:
self._read(self.buf1, 0x1D, self.mpu_addr)
res = self.buf1[0] & 7
except OSError:
raise MPUException(self._I2Cerror)
return res
@accel_filter_range.setter
def accel_filter_range(self, filt):
'''
Sets the accel low pass filter cutoff frequency
Pass: 0 1 2 3 4 5 6 7 BEWARE 7 doesn't work on device I tried.
Cutoff (Hz): 460 184 92 41 20 10 5 460
Sample rate (KHz): 1 1 1 1 1 1 1 1
'''
if filt in range(8):
try:
self._write(filt, 0x1D, self.mpu_addr)
except OSError:
raise MPUException(self._I2Cerror)
else:
raise ValueError('Filter coefficient must be between 0 and 7')
def _magsetup(self): # mode 2 100Hz continuous reads, 16 bit
'''
Magnetometer initialisation: use 16 bit continuous mode.
Mode 1 is 8Hz mode 2 is 100Hz repetition
returns correction values
'''
try:
self._write(0x0F, 0x0A, self._mag_addr) # fuse ROM access mode
self._read(self.buf3, 0x10, self._mag_addr) # Correction values
self._write(0, 0x0A, self._mag_addr) # Power down mode (AK8963 manual 6.4.6)
self._write(0x16, 0x0A, self._mag_addr) # 16 bit (0.15uT/LSB not 0.015), mode 2
except OSError:
raise MPUException(self._I2Cerror)
mag_x = (0.5*(self.buf3[0] - 128))/128 + 1
mag_y = (0.5*(self.buf3[1] - 128))/128 + 1
mag_z = (0.5*(self.buf3[2] - 128))/128 + 1
return (mag_x, mag_y, mag_z)
@property
def mag(self):
'''
Magnetomerte object
'''
return self._mag
def _mag_callback(self):
'''
Update magnetometer Vector3d object (if data available)
'''
try: # If read fails, returns last valid data and
self._read(self.buf1, 0x02, self._mag_addr) # increments mag_stale_count
if self.buf1[0] & 1 == 0:
return self._mag # Data not ready: return last value
self._read(self.buf6, 0x03, self._mag_addr)
self._read(self.buf1, 0x09, self._mag_addr)
except OSError:
raise MPUException(self._I2Cerror)
if self.buf1[0] & 0x08 > 0: # An overflow has occurred
self._mag_stale_count += 1 # Error conditions retain last good value
return # user should check for ever increasing stale_counts
self._mag._ivector[1] = bytes_toint(self.buf6[1], self.buf6[0]) # Note axis twiddling and little endian
self._mag._ivector[0] = bytes_toint(self.buf6[3], self.buf6[2])
self._mag._ivector[2] = -bytes_toint(self.buf6[5], self.buf6[4])
scale = 0.15 # scale is 0.15uT/LSB
self._mag._vector[0] = self._mag._ivector[0]*self.mag_correction[0]*scale
self._mag._vector[1] = self._mag._ivector[1]*self.mag_correction[1]*scale
self._mag._vector[2] = self._mag._ivector[2]*self.mag_correction[2]*scale
self._mag_stale_count = 0
@property
def mag_stale_count(self):
'''
Number of consecutive times where old data was returned
'''
return self._mag_stale_count
def get_mag_irq(self):
'''
Uncorrected values because floating point uses heap
'''
self._read(self.buf1, 0x02, self._mag_addr)
if self.buf1[0] == 1: # Data is ready
self._read(self.buf6, 0x03, self._mag_addr)
self._read(self.buf1, 0x09, self._mag_addr) # Mandatory status2 read
self._mag._ivector[1] = 0
if self.buf1[0] & 0x08 == 0: # No overflow has occurred
self._mag._ivector[1] = bytes_toint(self.buf6[1], self.buf6[0])
self._mag._ivector[0] = bytes_toint(self.buf6[3], self.buf6[2])
self._mag._ivector[2] = -bytes_toint(self.buf6[5], self.buf6[4])