forked from google/shell-encryption
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelinearization_key.cc
440 lines (397 loc) · 19.1 KB
/
relinearization_key.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
* Copyright 2018 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "relinearization_key.h"
#include "absl/numeric/int128.h"
#include "bits_util.h"
#include "montgomery.h"
#include "prng/integral_prng_types.h"
#include "status_macros.h"
#include "statusor.h"
#include "symmetric_encryption_with_prng.h"
namespace rlwe {
namespace {
// Method to compute the number of digits needed to represent integers mod
// q in base T. Upcasts the modulus to absl::uint128 to handle all Uint*
// types.
inline int ComputeDimension(Uint64 log_decomposition_modulus,
absl::uint128 modulus) {
Uint64 modulus_bits = static_cast<Uint64>(internal::BitLength(modulus));
return (modulus_bits + (log_decomposition_modulus - 1)) /
log_decomposition_modulus;
}
// Returns a random vector r orthogonal to (1,s). The second component is chosen
// using randomness-of-encryption sampled using the specified PRNG. The first
// component is then chosen so that r is perpendicular to (1,s).
template <typename ModularInt>
rlwe::StatusOr<std::vector<Polynomial<ModularInt>>> SampleOrthogonalFromPrng(
const SymmetricRlweKey<ModularInt>& key, SecurePrng* prng) {
// Sample a random polynomial r using a PRNG.
RLWE_ASSIGN_OR_RETURN(auto r, SamplePolynomialFromPrng<ModularInt>(
key.Len(), prng, key.ModulusParams()));
// Top entries of the matrix R will be -s*r, thus R is orthogonal to
// (1,s).
RLWE_ASSIGN_OR_RETURN(Polynomial<ModularInt> r_top,
r.Mul(key.Key(), key.ModulusParams()));
r_top.NegateInPlace(key.ModulusParams());
std::vector<Polynomial<ModularInt>> res = {std::move(r_top), std::move(r)};
return res;
}
// The i-th component of the result is (T^i key_power).
template <typename ModularInt>
rlwe::StatusOr<std::vector<Polynomial<ModularInt>>> PowersOfT(
const Polynomial<ModularInt>& key_power,
const SymmetricRlweKey<ModularInt>& key,
const ModularInt& decomposition_modulus, int dimension) {
std::vector<Polynomial<ModularInt>> result;
result.reserve(dimension);
Polynomial<ModularInt> key_to_i = key_power;
for (int i = 0; i < dimension; i++) {
// Increase the power of T in T^i s in place.
if (i != 0) {
RLWE_RETURN_IF_ERROR(
key_to_i.MulInPlace(decomposition_modulus, key.ModulusParams()));
}
result.push_back(key_to_i);
}
return result;
}
// The i-th component of the result contains a vector of i-th digits of the
// coefficients in base T (the decomposition modulus).
template <typename ModularInt>
rlwe::StatusOr<std::vector<std::vector<ModularInt>>> BitDecompose(
const std::vector<ModularInt>& coefficients,
const typename ModularInt::Params* modulus_params,
const Uint64 log_decomposition_modulus, int dimension) {
std::vector<typename ModularInt::Int> ciphertext_coeffs(coefficients.size(),
0);
std::transform(
coefficients.begin(), coefficients.end(), ciphertext_coeffs.begin(),
[modulus_params](ModularInt x) { return x.ExportInt(modulus_params); });
std::vector<std::vector<ModularInt>> result(dimension);
for (int i = 0; i < dimension; i++) {
result[i].reserve(ciphertext_coeffs.size());
for (int j = 0; j < ciphertext_coeffs.size(); ++j) {
RLWE_ASSIGN_OR_RETURN(
auto coefficient_part,
ModularInt::ImportInt(
(ciphertext_coeffs[j] % (1L << log_decomposition_modulus)),
modulus_params));
result[i].push_back(std::move(coefficient_part));
ciphertext_coeffs[j] = ciphertext_coeffs[j] >> log_decomposition_modulus;
}
}
return result;
}
template <typename ModularInt>
rlwe::StatusOr<std::vector<Polynomial<ModularInt>>> MatrixMultiply(
std::vector<std::vector<ModularInt>> decomposed_coefficients,
const std::vector<std::vector<Polynomial<ModularInt>>>& matrix,
const typename ModularInt::Params* modulus_params,
const NttParameters<ModularInt>* ntt_params) {
Polynomial<ModularInt> temp(matrix[0][0].Len(), modulus_params);
Polynomial<ModularInt> ntt_part(matrix[0][0].Len(), modulus_params);
std::vector<Polynomial<ModularInt>> result(2, temp);
for (int i = 0; i < matrix[0].size(); i++) {
ntt_part = Polynomial<ModularInt>::ConvertToNtt(
std::move(decomposed_coefficients[i]), ntt_params, modulus_params);
RLWE_ASSIGN_OR_RETURN(temp, ntt_part.Mul(matrix[0][i], modulus_params));
RLWE_RETURN_IF_ERROR(result[0].AddInPlace(temp, modulus_params));
RLWE_RETURN_IF_ERROR(ntt_part.MulInPlace(matrix[1][i], modulus_params))
RLWE_RETURN_IF_ERROR(result[1].AddInPlace(ntt_part, modulus_params));
}
return result;
}
} // namespace
template <typename ModularInt>
rlwe::StatusOr<typename RelinearizationKey<ModularInt>::RelinearizationKeyPart>
RelinearizationKey<ModularInt>::RelinearizationKeyPart::Create(
const Polynomial<ModularInt>& key_power,
const SymmetricRlweKey<ModularInt>& key,
const Uint64 log_decomposition_modulus,
const ModularInt& decomposition_modulus, int dimension, SecurePrng* prng,
SecurePrng* prng_encryption) {
std::vector<std::vector<Polynomial<ModularInt>>> matrix(2);
for (auto& row : matrix) {
row.reserve(dimension);
}
// Compute a vector of (T^i key_power).
RLWE_ASSIGN_OR_RETURN(
auto powers_of_t,
PowersOfT(key_power, key, decomposition_modulus, dimension));
// For key_power = s^j, the ith iteration of this loop computes the column of
// the KeyPart corresponding to (T^i s^j).
for (int i = 0; i < dimension; ++i) {
// Sample r component orthogonal to (1,s).
RLWE_ASSIGN_OR_RETURN(auto r, SampleOrthogonalFromPrng(key, prng));
// Sample error.
RLWE_ASSIGN_OR_RETURN(auto error,
SampleFromErrorDistribution<ModularInt>(
key_power.Len(), key.Variance(), prng_encryption,
key.ModulusParams()));
// Convert the error coefficients into an error polynomial.
auto e = Polynomial<ModularInt>::ConvertToNtt(
std::move(error), key.NttParams(), key.ModulusParams());
// Set the column of the Relinearization matrix.
RLWE_RETURN_IF_ERROR(
e.MulInPlace(key.PlaintextModulus(), key.ModulusParams()));
RLWE_RETURN_IF_ERROR(e.AddInPlace(r[0], key.ModulusParams()));
RLWE_RETURN_IF_ERROR(e.AddInPlace(powers_of_t[i], key.ModulusParams()));
matrix[0].push_back(std::move(e));
matrix[1].push_back(std::move(r[1]));
}
return RelinearizationKeyPart(std::move(matrix), log_decomposition_modulus);
}
template <typename ModularInt>
rlwe::StatusOr<std::vector<Polynomial<ModularInt>>>
RelinearizationKey<ModularInt>::RelinearizationKeyPart::ApplyPartTo(
const Polynomial<ModularInt>& ciphertext_part,
const typename ModularInt::Params* modulus_params,
const NttParameters<ModularInt>* ntt_params) const {
// Convert ciphertext out of NTT form.
std::vector<ModularInt> ciphertext_coefficients =
ciphertext_part.InverseNtt(ntt_params, modulus_params);
// Bit-decompose the vector of coefficients in the ciphertext.
RLWE_ASSIGN_OR_RETURN(
std::vector<std::vector<ModularInt>> decomposed_coefficients,
BitDecompose<ModularInt>(ciphertext_coefficients, modulus_params,
log_decomposition_modulus_, matrix_[0].size()));
// Matrix multiply with the bit-decomposed coefficients.
return MatrixMultiply<ModularInt>(std::move(decomposed_coefficients), matrix_,
modulus_params, ntt_params);
}
template <typename ModularInt>
rlwe::StatusOr<typename RelinearizationKey<ModularInt>::RelinearizationKeyPart>
RelinearizationKey<ModularInt>::RelinearizationKeyPart::Deserialize(
const std::vector<SerializedNttPolynomial>& polynomials,
Uint64 log_decomposition_modulus, SecurePrng* prng,
const ModularIntParams* modulus_params,
const NttParameters<ModularInt>* ntt_params) {
// The polynomials input is a flattened representation of a 2 x dimension
// matrix where the first half corresponds to the first row of matrix and the
// second half corresponds to the second row of matrix. This matrix makes up
// the RelinearizationKeyPart.
int dimension = polynomials.size();
auto matrix = std::vector<std::vector<Polynomial<ModularInt>>>(2);
matrix[0].reserve(dimension);
matrix[1].reserve(dimension);
for (int i = 0; i < dimension; i++) {
RLWE_ASSIGN_OR_RETURN(auto elt, Polynomial<ModularInt>::Deserialize(
polynomials[i], modulus_params));
matrix[0].push_back(std::move(elt));
RLWE_ASSIGN_OR_RETURN(auto sample,
SamplePolynomialFromPrng<ModularInt>(
matrix[0][i].Len(), prng, modulus_params));
matrix[1].push_back(std::move(sample));
}
return RelinearizationKeyPart(std::move(matrix), log_decomposition_modulus);
}
template <typename ModularInt>
RelinearizationKey<ModularInt>::RelinearizationKey(
const SymmetricRlweKey<ModularInt>& key, absl::string_view prng_seed,
ssize_t num_parts, Uint64 log_decomposition_modulus,
Uint64 substitution_power, ModularInt decomposition_modulus,
std::vector<RelinearizationKeyPart> relinearization_key)
: dimension_(ComputeDimension(log_decomposition_modulus,
key.ModulusParams()->modulus)),
num_parts_(num_parts),
log_decomposition_modulus_(log_decomposition_modulus),
decomposition_modulus_(decomposition_modulus),
substitution_power_(substitution_power),
modulus_params_(key.ModulusParams()),
ntt_params_(key.NttParams()),
relinearization_key_(std::move(relinearization_key)),
prng_seed_(prng_seed) {}
template <typename ModularInt>
rlwe::StatusOr<RelinearizationKey<ModularInt>>
RelinearizationKey<ModularInt>::Create(const SymmetricRlweKey<ModularInt>& key,
absl::string_view prng_seed,
ssize_t num_parts,
Uint64 log_decomposition_modulus,
Uint64 substitution_power) {
if (num_parts <= 0) {
return absl::InvalidArgumentError(
absl::StrCat("Num parts: ", num_parts, " must be positive."));
}
if (log_decomposition_modulus <= 0) {
return absl::InvalidArgumentError(
absl::StrCat("Log decomposition modulus, ", log_decomposition_modulus,
", must be positive."));
} else if (log_decomposition_modulus > key.ModulusParams()->log_modulus) {
return absl::InvalidArgumentError(absl::StrCat(
"Log decomposition modulus, ", log_decomposition_modulus,
", must be at most: ", key.ModulusParams()->log_modulus, "."));
}
RLWE_ASSIGN_OR_RETURN(auto decomposition_modulus,
ModularInt::ImportInt(key.ModulusParams()->One()
<< log_decomposition_modulus,
key.ModulusParams()));
// Initialize the first part of the secret key, s.
RLWE_ASSIGN_OR_RETURN(auto key_base, key.Substitute(substitution_power));
auto key_power = key_base.Key();
RLWE_ASSIGN_OR_RETURN(auto prng, SingleThreadPrng::Create(prng_seed));
RLWE_ASSIGN_OR_RETURN(auto prng_encryption_seed,
SingleThreadPrng::GenerateSeed());
RLWE_ASSIGN_OR_RETURN(auto prng_encryption,
SingleThreadPrng::Create(prng_encryption_seed));
auto dimension =
ComputeDimension(log_decomposition_modulus, key.ModulusParams()->modulus);
std::vector<RelinearizationKeyPart> relinearization_key;
relinearization_key.reserve(num_parts);
// Create RealinearizationKeyPart for each of the secret key parts: s, ...,
// s^k.
for (int i = 1; i < num_parts; i++) {
if (i != 1) {
// Increment the power of s.
RLWE_RETURN_IF_ERROR(
key_power.MulInPlace(key_base.Key(), key.ModulusParams()));
}
RLWE_ASSIGN_OR_RETURN(
auto key_part,
RelinearizationKeyPart::Create(
key_power, key, log_decomposition_modulus, decomposition_modulus,
dimension, prng.get(), prng_encryption.get()));
relinearization_key.push_back(std::move(key_part));
}
return RelinearizationKey<ModularInt>(
key, prng_seed, num_parts, log_decomposition_modulus, substitution_power,
decomposition_modulus, std::move(relinearization_key));
}
template <typename ModularInt>
rlwe::StatusOr<SymmetricRlweCiphertext<ModularInt>>
RelinearizationKey<ModularInt>::ApplyTo(
const SymmetricRlweCiphertext<ModularInt>& ciphertext) const {
// Ensure that the length of the ciphertext is less than or equal to the
// length of the relinearization key.
if (ciphertext.Len() > num_parts_) {
return absl::InvalidArgumentError(
"RelinearizationKey not large enough for ciphertext.");
}
// Initialize the result ciphertext of length 2.
RLWE_ASSIGN_OR_RETURN(auto comp, ciphertext.Component(0));
std::vector<Polynomial<ModularInt>> result(
2, Polynomial<ModularInt>(comp.Len(), modulus_params_));
// Apply each RelinearizationKeyPart to the part of the ciphertext it
// corresponds to. The first component of the ciphertext corresponds to the
// "1" part of the secret key, and is added without any
// RelinearizationKeyPart.
result[0] = std::move(comp);
for (int i = 0; i < relinearization_key_.size(); i++) {
// Add RelinearizationKeyPart_i c_i to the result vector.
RLWE_ASSIGN_OR_RETURN(auto temp_comp, ciphertext.Component(i + 1));
RLWE_ASSIGN_OR_RETURN(auto result_part,
relinearization_key_[i].ApplyPartTo(
temp_comp, modulus_params_, ntt_params_));
RLWE_RETURN_IF_ERROR(result[0].AddInPlace(result_part[0], modulus_params_));
RLWE_RETURN_IF_ERROR(result[1].AddInPlace(result_part[1], modulus_params_));
}
return SymmetricRlweCiphertext<ModularInt>(
std::move(result), 1,
ciphertext.Error() +
ciphertext.ErrorParams()->B_relinearize(log_decomposition_modulus_),
modulus_params_, ciphertext.ErrorParams());
}
template <typename ModularInt>
rlwe::StatusOr<SerializedRelinearizationKey>
RelinearizationKey<ModularInt>::Serialize() const {
SerializedRelinearizationKey output;
output.set_log_decomposition_modulus(log_decomposition_modulus_);
output.set_num_parts(num_parts_);
output.set_prng_seed(prng_seed_);
output.set_power_of_s(substitution_power_);
for (const RelinearizationKeyPart& matrix : relinearization_key_) {
// Only serialize the first row of each matrix.
for (const Polynomial<ModularInt>& c : matrix.Matrix()) {
RLWE_ASSIGN_OR_RETURN(*output.add_c(), c.Serialize(modulus_params_));
}
}
return output;
}
template <typename ModularInt>
rlwe::StatusOr<RelinearizationKey<ModularInt>>
RelinearizationKey<ModularInt>::Deserialize(
const SerializedRelinearizationKey& serialized,
const typename ModularInt::Params* modulus_params,
const NttParameters<ModularInt>* ntt_params) {
// Verifies that the number of polynomials in serialized is expected.
// A RelinearizationKey can decrypt ciphertexts with num_parts number of
// components corresponding to decryption under (1, s, ..., s^k) or (1,
// s(x^power)) but only contains parts corresponding to the non-"1"
// components.
if (serialized.num_parts() <= 1) {
return absl::InvalidArgumentError(
absl::StrCat("The number of parts, ", serialized.num_parts(),
", must be greater than one."));
} else if (serialized.c_size() % (serialized.num_parts() - 1) != 0) {
return absl::InvalidArgumentError(
absl::StrCat("The length of serialized, ", serialized.c_size(), ", ",
"must be divisible by the number of parts minus one ",
serialized.num_parts() - 1, "."));
}
// Return an error when log decomposition modulus is non-positive.
if (serialized.log_decomposition_modulus() <= 0) {
return absl::InvalidArgumentError(absl::StrCat(
"Log decomposition modulus, ", serialized.log_decomposition_modulus(),
", must be positive."));
} else if (serialized.log_decomposition_modulus() >
modulus_params->log_modulus) {
return absl::InvalidArgumentError(absl::StrCat(
"Log decomposition modulus, ", serialized.log_decomposition_modulus(),
", must be at most: ", modulus_params->log_modulus, "."));
}
int polynomials_per_matrix =
serialized.c_size() / (serialized.num_parts() - 1);
int dimension = polynomials_per_matrix;
if (dimension != ComputeDimension(serialized.log_decomposition_modulus(),
modulus_params->modulus)) {
return absl::InvalidArgumentError(
absl::StrCat("Number of NTT Polynomials does not match expected ",
"number of matrix entries."));
}
RLWE_ASSIGN_OR_RETURN(
auto decomposition_modulus,
ModularInt::ImportInt(static_cast<typename ModularInt::Int>(1)
<< serialized.log_decomposition_modulus(),
modulus_params));
RelinearizationKey output(serialized.log_decomposition_modulus(),
decomposition_modulus, modulus_params, ntt_params);
output.dimension_ = dimension;
output.num_parts_ = serialized.num_parts();
output.prng_seed_ = serialized.prng_seed();
output.substitution_power_ = serialized.power_of_s();
// Create prng based on seed.
RLWE_ASSIGN_OR_RETURN(auto prng, SingleThreadPrng::Create(output.prng_seed_));
// Takes each polynomials_per_matrix chunk of serialized.c()'s and places them
// into a KeyPart.
output.relinearization_key_.reserve(serialized.num_parts() - 1);
for (int i = 0; i < (serialized.num_parts() - 1); i++) {
auto start = serialized.c().begin() + i * polynomials_per_matrix;
auto end = start + polynomials_per_matrix;
std::vector<SerializedNttPolynomial> chunk(start, end);
RLWE_ASSIGN_OR_RETURN(auto deserialized,
RelinearizationKeyPart::Deserialize(
chunk, serialized.log_decomposition_modulus(),
prng.get(), modulus_params, ntt_params));
output.relinearization_key_.push_back(std::move(deserialized));
}
return output;
}
// Instantiations of RelinearizationKey with specific MontgomeryInt classes.
// If any new types are added, montgomery.h should be updated accordingly (such
// as ensuring BigInt is correctly specialized, etc.).
template class RelinearizationKey<MontgomeryInt<Uint16>>;
template class RelinearizationKey<MontgomeryInt<Uint32>>;
template class RelinearizationKey<MontgomeryInt<Uint64>>;
template class RelinearizationKey<MontgomeryInt<absl::uint128>>;
} // namespace rlwe