-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
67 lines (55 loc) · 2.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# coding:utf-8
import sys
import numpy as np
import pandas as pd
import pickle
import matplotlib.pyplot as plt
from sklearn import preprocessing
def save_pickle(filename, data):
with open(filename, 'wb') as f:
pickle.dump(data, f)
def load_pickle(filename):
data = None
with open(filename, 'rb') as f:
data = pickle.load(f)
return data
def get_ids_for_tvt():
train_ids = []
valid_ids = []
test_ids = []
days_in_months = [31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30-1] # May to April
start_id = 0
for i in range(len(days_in_months)):
days = days_in_months[i]
split_id_0 = start_id
split_id_1 = start_id + int(days * 24 * 0.6)
split_id_2 = start_id + int(days * 24 * 0.8)
split_id_3 = start_id + int(days * 24)
train_ids.extend(np.arange(split_id_0, split_id_1, 1))
valid_ids.extend(np.arange(split_id_1, split_id_2, 1))
test_ids.extend(np.arange(split_id_2, split_id_3, 1))
start_id += int(days * 24)
return train_ids, valid_ids, test_ids
def load_data(f_x, f_y):
x = load_pickle(f_x)
y = load_pickle(f_y)
y = np.array(y[:, np.newaxis])
if len(x.shape) == 3:
ss = preprocessing.StandardScaler()
for i in range(x.shape[-1]):
ss.fit(x[:, :, i])
x[:, :, i] = ss.transform(x[:, :, i])
train_ids, valid_ids, test_ids = get_ids_for_tvt()
x_train = x[train_ids]
y_train = y[train_ids]
x_valid = x[valid_ids]
y_valid = y[valid_ids]
x_test = x[test_ids]
y_test = y[test_ids]
print('x_shape: {} y_shape: {}\nx_train_shape: {} y_train_shape: {} x_valid_shape: {} y_valid_shape: {} x_test_shape: {} y_test_shape: {}\n'
.format(x.shape, y.shape, x_train.shape, y_train.shape, x_valid.shape, y_valid.shape, x_test.shape, y_test.shape))
return x_train, y_train, x_valid, y_valid, x_test, y_test
def get_param_number(net):
total_num = sum(p.numel() for p in net.parameters())
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
return total_num, trainable_num