Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Package Does not seem to recognize camera topic #403

Open
PhilipAmadasun opened this issue Jan 6, 2023 · 0 comments
Open

Package Does not seem to recognize camera topic #403

PhilipAmadasun opened this issue Jan 6, 2023 · 0 comments

Comments

@PhilipAmadasun
Copy link

PhilipAmadasun commented Jan 6, 2023

I am trying to use the yolo_v3.launch file with my camera sensor in gazebo. I made sure to remap the "image" to the topics the camera information (image_raw) is published to. I also made sure information was actually being published to the topic. It is.
When I launch the file, however, I get an error in temrinal:

SUMMARY
========

PARAMETERS
 * /darknet_ros/actions/camera_reading/name: /darknet_ros/chec...
 * /darknet_ros/config_path: /home/philip/obj_...
 * /darknet_ros/image_view/enable_console_output: True
 * /darknet_ros/image_view/enable_opencv: True
 * /darknet_ros/image_view/wait_key_delay: 1
 * /darknet_ros/publishers/bounding_boxes/latch: False
 * /darknet_ros/publishers/bounding_boxes/queue_size: 1
 * /darknet_ros/publishers/bounding_boxes/topic: /darknet_ros/boun...
 * /darknet_ros/publishers/detection_image/latch: True
 * /darknet_ros/publishers/detection_image/queue_size: 1
 * /darknet_ros/publishers/detection_image/topic: /darknet_ros/dete...
 * /darknet_ros/publishers/object_detector/latch: False
 * /darknet_ros/publishers/object_detector/queue_size: 1
 * /darknet_ros/publishers/object_detector/topic: /darknet_ros/foun...
 * /darknet_ros/subscribers/camera_reading/queue_size: 1
 * /darknet_ros/subscribers/camera_reading/topic: /camera/rgb/image...
 * /darknet_ros/weights_path: /home/philip/obj_...
 * /darknet_ros/yolo_model/config_file/name: yolov3.cfg
 * /darknet_ros/yolo_model/detection_classes/names: ['person', 'bicyc...
 * /darknet_ros/yolo_model/threshold/value: 0.3
 * /darknet_ros/yolo_model/weight_file/name: yolov3.weights
 * /rosdistro: melodic
 * /rosversion: 1.14.13

NODES
  /
    darknet_ros (darknet_ros/darknet_ros)

ROS_MASTER_URI=http://localhost:11311

process[darknet_ros-1]: started with pid [31727]
[ INFO] [1673044553.097577241]: [YoloObjectDetector] Node started.
[ INFO] [1673044553.105442082]: [YoloObjectDetector] Xserver is running.
[ INFO] [1673044553.108687784]: [YoloObjectDetector] init().
YOLO V3
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32  0.299 BFLOPs
    1 conv     64  3 x 3 / 2   416 x 416 x  32   ->   208 x 208 x  64  1.595 BFLOPs
    2 conv     32  1 x 1 / 1   208 x 208 x  64   ->   208 x 208 x  32  0.177 BFLOPs
    3 conv     64  3 x 3 / 1   208 x 208 x  32   ->   208 x 208 x  64  1.595 BFLOPs
    4 res    1                 208 x 208 x  64   ->   208 x 208 x  64
    5 conv    128  3 x 3 / 2   208 x 208 x  64   ->   104 x 104 x 128  1.595 BFLOPs
    6 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64  0.177 BFLOPs
    7 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128  1.595 BFLOPs
    8 res    5                 104 x 104 x 128   ->   104 x 104 x 128
    9 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64  0.177 BFLOPs
   10 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128  1.595 BFLOPs
   11 res    8                 104 x 104 x 128   ->   104 x 104 x 128
   12 conv    256  3 x 3 / 2   104 x 104 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   13 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
   14 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   15 res   12                  52 x  52 x 256   ->    52 x  52 x 256
   16 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
   17 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   18 res   15                  52 x  52 x 256   ->    52 x  52 x 256
   19 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
   20 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   21 res   18                  52 x  52 x 256   ->    52 x  52 x 256
   22 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
   23 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   24 res   21                  52 x  52 x 256   ->    52 x  52 x 256
   25 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
   26 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   27 res   24                  52 x  52 x 256   ->    52 x  52 x 256
   28 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
   29 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   30 res   27                  52 x  52 x 256   ->    52 x  52 x 256
   31 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
   32 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   33 res   30                  52 x  52 x 256   ->    52 x  52 x 256
   34 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
   35 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
   36 res   33                  52 x  52 x 256   ->    52 x  52 x 256
   37 conv    512  3 x 3 / 2    52 x  52 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   38 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   39 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   40 res   37                  26 x  26 x 512   ->    26 x  26 x 512
   41 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   42 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   43 res   40                  26 x  26 x 512   ->    26 x  26 x 512
   44 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   45 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   46 res   43                  26 x  26 x 512   ->    26 x  26 x 512
   47 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   48 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   49 res   46                  26 x  26 x 512   ->    26 x  26 x 512
   50 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   51 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   52 res   49                  26 x  26 x 512   ->    26 x  26 x 512
   53 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   54 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   55 res   52                  26 x  26 x 512   ->    26 x  26 x 512
   56 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   57 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   58 res   55                  26 x  26 x 512   ->    26 x  26 x 512
   59 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   60 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   61 res   58                  26 x  26 x 512   ->    26 x  26 x 512
   62 conv   1024  3 x 3 / 2    26 x  26 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   63 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs
   64 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   65 res   62                  13 x  13 x1024   ->    13 x  13 x1024
   66 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs
   67 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   68 res   65                  13 x  13 x1024   ->    13 x  13 x1024
   69 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs
   70 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   71 res   68                  13 x  13 x1024   ->    13 x  13 x1024
   72 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs
   73 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   74 res   71                  13 x  13 x1024   ->    13 x  13 x1024
   75 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs
   76 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   77 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs
   78 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   79 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs
   80 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   81 conv    255  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 255  0.088 BFLOPs
   82 yolo
   83 route  79
   84 conv    256  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 256  0.044 BFLOPs
   85 upsample            2x    13 x  13 x 256   ->    26 x  26 x 256
   86 route  85 61
   87 conv    256  1 x 1 / 1    26 x  26 x 768   ->    26 x  26 x 256  0.266 BFLOPs
   88 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   89 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   90 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   91 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs
   92 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs
   93 conv    255  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 255  0.177 BFLOPs
   94 yolo
   95 route  91
   96 conv    128  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 128  0.044 BFLOPs
   97 upsample            2x    26 x  26 x 128   ->    52 x  52 x 128
   98 route  97 36
   99 conv    128  1 x 1 / 1    52 x  52 x 384   ->    52 x  52 x 128  0.266 BFLOPs
  100 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
  101 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
  102 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
  103 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs
  104 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
  105 conv    255  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 255  0.353 BFLOPs
  106 yolo
Loading weights from /home/philip/obj_ws/src/darknet_ros/darknet_ros/yolo_network_config/weights/yolov3.weights...Done!
Waiting for image.
[darknet_ros-1] process has died [pid 31727, exit code -11, cmd /home/philip/obj_ws/devel/lib/darknet_ros/darknet_ros camera/rgb/image_raw:=wam_v/front/image_raw __name:=darknet_ros __log:=/home/philip/.ros/log/5a7fdcdc-8e12-11ed-8206-d43b04207196/darknet_ros-1.log].
log file: /home/philip/.ros/log/5a7fdcdc-8e12-11ed-8206-d43b04207196/darknet_ros-1*.log
all processes on machine have died, roslaunch will exit
shutting down processing monitor...
... shutting down processing monitor complete
done

Perhaps there are additional things I need to set up before hand.? All I do is launch my model in gazebo and then launch the yolo_v3.launch file in a separate terminal.

@PhilipAmadasun PhilipAmadasun changed the title Unsure how to use this package Package Does not seem to recognize camera topic Jan 14, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant