-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutils.py
233 lines (194 loc) · 9.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import math
import os
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
# global configs
CLIP_LEN, RESIZE_HEIGHT, CROP_SIZE = 32, 128, 112
class VideoDataset(Dataset):
r"""A Dataset for a folder of videos. Expects the directory structure to be
directory->[train/val/test]->[class labels]->[videos]. Initializes with a list
of all file names, along with an array of labels, with label being automatically
inferred from the respective folder names.
Args:
dataset (str): Name of dataset. Defaults to 'ucf101'.
split (str): Determines which folder of the directory the dataset will read from. Defaults to 'train'.
"""
def __init__(self, dataset='ucf101', split='train'):
self.original_dir = os.path.join('data', dataset)
self.preprocessed_dir = os.path.join('data', 'preprocessed_' + dataset)
self.split = split
if not self.check_integrity():
raise RuntimeError('{} split of {} dataset is not found. You need to '
'download it from official website.'.format(split, dataset))
if not self.check_preprocess():
print('Preprocessing {} split of {} dataset, this will take long, '
'but it will be done only once.'.format(split, dataset))
self.preprocess()
self.file_names, labels = [], []
for label in sorted(os.listdir(os.path.join(self.preprocessed_dir, self.split))):
for file_name in sorted(os.listdir(os.path.join(self.preprocessed_dir, self.split, label))):
self.file_names.append(os.path.join(self.preprocessed_dir, self.split, label, file_name))
labels.append(label)
print('Number of {} videos: {:d}'.format(split, len(self.file_names)))
# prepare a mapping between the label names (strings) and indices (ints)
self.label2index = {label: index for index, label in enumerate(get_labels(dataset))}
# convert the list of label names into an array of label indices
self.label_array = np.array([self.label2index[label] for label in labels], dtype=int)
def __len__(self):
return len(self.file_names)
def __getitem__(self, index):
# load and preprocess.
buffer = self.load_frames(self.file_names[index])
buffer = self.crop(buffer, CLIP_LEN, CROP_SIZE)
label = np.array(self.label_array[index])
if self.split == 'train':
# perform data augmentation (random horizontal flip)
buffer = self.random_flip(buffer)
buffer = self.normalize(buffer)
buffer = self.to_tensor(buffer)
return torch.from_numpy(buffer), torch.from_numpy(label)
def check_integrity(self):
if os.path.exists(os.path.join(self.original_dir, self.split)):
return True
else:
return False
def check_preprocess(self):
if os.path.exists(os.path.join(self.preprocessed_dir, self.split)):
return True
else:
return False
def preprocess(self):
if not os.path.exists(self.preprocessed_dir):
os.mkdir(self.preprocessed_dir)
os.mkdir(os.path.join(self.preprocessed_dir, self.split))
for file in sorted(os.listdir(os.path.join(self.original_dir, self.split))):
os.mkdir(os.path.join(self.preprocessed_dir, self.split, file))
for video in sorted(os.listdir(os.path.join(self.original_dir, self.split, file))):
video_name = os.path.join(self.original_dir, self.split, file, video)
save_name = os.path.join(self.preprocessed_dir, self.split, file, video)
self.process_video(video_name, save_name)
print('Preprocess finished.')
@staticmethod
def process_video(video_name, save_name):
print('Preprocess {}'.format(video_name))
# initialize a VideoCapture object to read video data into a numpy array
capture = cv2.VideoCapture(video_name)
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
# make sure the preprocessed video has at least CLIP_LEN frames
extract_frequency = 4
if frame_count // extract_frequency <= CLIP_LEN:
extract_frequency -= 1
if frame_count // extract_frequency <= CLIP_LEN:
extract_frequency -= 1
if frame_count // extract_frequency <= CLIP_LEN:
extract_frequency -= 1
count, i, retaining = 0, 0, True
while count < frame_count and retaining:
retaining, frame = capture.read()
if frame is None:
continue
if count % extract_frequency == 0:
resize_height = RESIZE_HEIGHT
resize_width = math.floor(frame_width / frame_height * resize_height)
# make sure resize width >= crop size
if resize_width < CROP_SIZE:
resize_width = RESIZE_HEIGHT
resize_height = math.floor(frame_height / frame_width * resize_width)
frame = cv2.resize(frame, (resize_width, resize_height))
if not os.path.exists(save_name.split('.')[0]):
os.mkdir(save_name.split('.')[0])
cv2.imwrite(filename=os.path.join(save_name.split('.')[0], '0000{}.jpg'.format(str(i))), img=frame)
i += 1
count += 1
# release the VideoCapture once it is no longer needed
capture.release()
@staticmethod
def random_flip(buffer):
if np.random.random() < 0.5:
for i, frame in enumerate(buffer):
frame = cv2.flip(buffer[i], flipCode=1)
buffer[i] = frame
return buffer
@staticmethod
def normalize(buffer):
buffer = buffer.astype(np.float32)
for i, frame in enumerate(buffer):
frame = frame / 255.0
buffer[i] = frame
return buffer
@staticmethod
def to_tensor(buffer):
return buffer.transpose((3, 0, 1, 2))
@staticmethod
def load_frames(file_dir):
frames = sorted([os.path.join(file_dir, img) for img in os.listdir(file_dir)])
buffer = []
for i, frame_name in enumerate(frames):
frame = np.array(cv2.imread(frame_name))
buffer.append(frame)
return np.array(buffer).astype(np.uint8)
def crop(self, buffer, clip_len, crop_size):
if self.split == 'train':
# randomly select time index for temporal jitter
if buffer.shape[0] > clip_len:
time_index = np.random.randint(buffer.shape[0] - clip_len)
else:
time_index = 0
# randomly select start indices in order to crop the video
height_index = np.random.randint(buffer.shape[1] - crop_size)
width_index = np.random.randint(buffer.shape[2] - crop_size)
# crop and jitter the video using indexing. The spatial crop is performed on
# the entire array, so each frame is cropped in the same location. The temporal
# jitter takes place via the selection of consecutive frames
else:
# for val and test, select the middle and center frames
if buffer.shape[0] > clip_len:
time_index = math.floor((buffer.shape[0] - clip_len) / 2)
else:
time_index = 0
height_index = math.floor((buffer.shape[1] - crop_size) / 2)
width_index = math.floor((buffer.shape[2] - crop_size) / 2)
buffer = buffer[time_index:time_index + clip_len, height_index:height_index + crop_size,
width_index:width_index + crop_size, :]
# padding repeated frames to make sure the shape as same
if buffer.shape[0] < clip_len:
repeated = clip_len // buffer.shape[0] - 1
remainder = clip_len % buffer.shape[0]
buffered, reverse = buffer, True
if repeated > 0:
padded = []
for i in range(repeated):
if reverse:
pad = buffer[::-1, :, :, :]
reverse = False
else:
pad = buffer
reverse = True
padded.append(pad)
padded = np.concatenate(padded, axis=0)
buffer = np.concatenate((buffer, padded), axis=0)
if reverse:
pad = buffered[::-1, :, :, :][:remainder, :, :, :]
else:
pad = buffered[:remainder, :, :, :]
buffer = np.concatenate((buffer, pad), axis=0)
return buffer
def load_data(dataset='ucf101', batch_size=8):
train_data = VideoDataset(dataset=dataset, split='train')
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=8)
val_data = VideoDataset(dataset=dataset, split='val')
val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=False, num_workers=8)
test_data = VideoDataset(dataset=dataset, split='test')
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=8)
return train_loader, val_loader, test_loader
def get_labels(dataset='ucf101'):
labels = []
with open('data/{}_labels.txt'.format(dataset), 'r') as load_f:
raw_labels = load_f.readlines()
for label in raw_labels:
labels.append(label.replace('\n', ''))
return sorted(labels)