-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tf.py
308 lines (257 loc) · 12.7 KB
/
train_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import tensorflow as tf
import numpy as np
import os
import math
from network_res import Model_res
from keras.datasets import cifar10, cifar100
import argparse
import time
import foolbox
import cv2
import torch
import torchvision.models as models
import torchvision.transforms as transforms
import json
from tqdm import tqdm
import pdb
np.random.seed(12345)
tf.set_random_seed(12345)
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def cifar(dataset='cifar10'):
'''
:param dataset:
:return: numpy x_train,x_test | [0,1]
'''
if dataset == 'cifar10':
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
elif dataset == 'cifar100':
(X_train, y_train), (X_test, y_test) = cifar100.load_data(label_mode='fine')
print('X_train shape:', X_train.shape)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
return X_train, X_test
def attack(threshold):
'''
:param threshold:
:return: attack_succ_file | model | transform towards data
'''
resnet101 = models.resnet101(pretrained=True).eval()
if torch.cuda.is_available():
resnet101 = resnet101.cuda()
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
fmodel = foolbox.models.PyTorchModel(resnet101, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
labels=['65', '970', '230', '809', '516', '57', '334', '415', '674', '332']
attack = foolbox.attacks.LinfinityBasicIterativeAttack(fmodel, distance=foolbox.distances.Linfinity, threshold=threshold)
succ_att = []
raw_data_path = './raw_data'
transformer = transforms.Compose([transforms.ToTensor()])
if os.path.exists('./attack.json'):
# read attack images
with open('./attack.json', 'r') as f:
succ_att = json.loads(f.read())
print('Load attack images from file.')
else:
# generate attack images & save them to file
with tqdm(total=len(os.listdir(raw_data_path))) as pbar:
for file_name in os.listdir(raw_data_path):
ind = int(file_name.split('_')[-1].split('.')[0]) - 1
true_label = int(labels[ind]) # 得到对应图片的lable
raw_img_path = os.path.join(raw_data_path, file_name)
raw_img = cv2.imread(raw_img_path) # (None, None, 3), int
img = cv2.resize(raw_img, (224, 224)) # (224, 224, 3), int
img = transformer(img).numpy() # (3, 224, 224), float
pre_label= np.argmax(fmodel.predictions(img))
if true_label != pre_label: # 如果预测本来就是错的,不加以攻击
continue
adv_image = attack(img, true_label) # (3, 224, 224), float # 否则进行攻击
if adv_image is None:
continue
diff = adv_image - img # 得到噪声扰动
diff = np.clip(diff, -threshold, threshold) # Linfinity # 进行噪声的epsilon限制
adv_image = img + diff # (3, 224, 224), float #得到最终得到对抗样本
adv_label = np.argmax(fmodel.predictions(adv_image)) # 得到对抗样本的预测类别
adv_image = np.transpose(adv_image, (1, 2, 0)) # (224, 224, 3), float
if true_label == adv_label: # 如果攻击不成功,跳过之后的步骤
continue
# 对于攻击成功的情况,分别保存好原始文件名、 真实label、对抗label、对抗样本
succ_att.append([file_name, int(true_label), int(adv_label), adv_image])
# print('%s, label: %d, predicted class: %d, adversarial class: %d' % tuple(succ_att[-1][:4]))
pbar.update(1)
print('New generate attack images, num of attack images: {}'.format(len(succ_att)))#输出需要进行对抗攻击、而且对抗攻击成功的样本的数量
with open('./attack.json', 'w') as f:
f.write(json.dumps(succ_att, cls=NumpyEncoder)) # 将succ_att保存为json文件
return succ_att, fmodel, transformer
def main():
start_time = time.time()
parser = argparse.ArgumentParser()
parser.add_argument('--test_mode', default=0, type=int, choices=list(range(10)))
# parser.add_argument('--model', default='res', type=str)
parser.add_argument('--train_dataset', default='cifar10', type=str)
parser.add_argument('--n_epoch', default=3, type=int)
parser.add_argument('--batch_size', default=20, type=int)
parser.add_argument('--test_batch_size', default=10, type=int)
parser.add_argument('--lambd', default=0.0001, type=float)
parser.add_argument('--noise_dev', default=20.0, type=float)
parser.add_argument('--Linfinity', default=0.03, type=float)
parser.add_argument('--binary_threshold', default=0.5, type=float)
parser.add_argument('--lr_mode', default=0, type=int)
parser.add_argument('--test_interval', default=1000, type=int)
parser.add_argument('--save_model', default='res_cifar10', type=str)
args = parser.parse_args()
if args.test_mode == 0:
model = Model_res(com_disable=True,rec_disable=True)
args.save_model = 'normal'
elif args.test_mode == 1:
model = Model_res(n_com=1,n_rec=3,com_disable=False,rec_disable=True)
args.save_model = '1_on_off'
elif args.test_mode == 2:
model = Model_res(n_com=2,n_rec=3,com_disable=False,rec_disable=True)
args.save_model = '2_on_off'
elif args.test_mode == 3:
model = Model_res(n_com=3,n_rec=3,com_disable=False,rec_disable=True)
args.save_model = '3_on_off'
elif args.test_mode == 4:
model = Model_res(n_com=3,n_rec=1,com_disable=True,rec_disable=False)
args.save_model = 'off_on_1'
elif args.test_mode == 5:
model = Model_res(n_com=3,n_rec=2,com_disable=True,rec_disable=False)
args.save_model = 'off_on_2'
elif args.test_mode == 6:
model = Model_res(n_com=3,n_rec=3,com_disable=True,rec_disable=False)
args.save_model = 'off_on_3'
elif args.test_mode == 7:
model = Model_res(n_com=1,n_rec=1,com_disable=False,rec_disable=False)
args.save_model = '1_1'
elif args.test_mode == 8:
model = Model_res(n_com=2,n_rec=2,com_disable=False,rec_disable=False)
args.save_model = '2_2'
elif args.test_mode == 9:
model = Model_res(n_com=3,n_rec=3,com_disable=False,rec_disable=False)
args.save_model = '3_3'
print('test mode: {}; model name: {}'.format(args.test_mode, args.save_model))
x_train, _ = cifar(args.train_dataset)
succ_att, fmodel, transformer = attack(args.Linfinity)
# Batch read attack images
print("Preparing attack images batch.")
attack_total = None
true_label_list = []
name_list = []
for file_name, true_label, adv_label, adv_image in succ_att:
adv_image = np.array([adv_image])
if attack_total is None:
attack_total = adv_image
else:
attack_total = np.concatenate((attack_total, adv_image), axis=0)
name_list.append(file_name)
true_label_list.append(true_label)
data = tf.placeholder(tf.float32, shape=[None] + [None,None,3], name = 'data')
is_training = tf.placeholder(tf.bool, name='is_training')
global_steps = tf.Variable(0, trainable=False)
placeholders = {
'data': data,
'is_training': is_training,
'global_steps': global_steps,
}
noisy_x = data
noisy_x = tf.clip_by_value(noisy_x,clip_value_max=1.,clip_value_min=0.)
linear_code = model.res_com(noisy_x, is_training)
# add gaussian before sigmoid to encourage binary code
noisy_code = linear_code - tf.random_normal(stddev=args.noise_dev,shape=tf.shape(linear_code))
binary_code = tf.nn.sigmoid(noisy_code)
y = model.res_rec(binary_code, is_training)
binary_code_test = tf.cast(binary_code > args.binary_threshold, tf.float32)
y_test = model.res_rec(binary_code_test, is_training)
# optimization
loss = tf.reduce_mean((y-noisy_x)**2) + (tf.reduce_mean(binary_code**2)) * args.lambd
# learning rate
if args.lr_mode == 0:
# constant
lr = 0.001
elif args.lr_mode == 1:
# constant decay
iter_total = x_train.shape[0] // args.batch_size * args.n_epoch
boundaries = [int(iter_total*0.25), int(iter_total*0.75), int(iter_total*0.9)]
values = [0.01, 0.001, 0.0005, 0.0001]
lr = tf.train.piecewise_constant_decay(global_steps, boundaries, values)
elif args.lr_mode == 2: # TBD
# exponential decay
iter_total = x_train.shape[0] // args.batch_size * args.n_epoch
lr_start = 0.01
lr = tf.train.exponential_decay(lr_start, global_steps, iter_total // 100, 0.96, staircase=True)
opt = tf.train.AdamOptimizer(lr)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = opt.minimize(loss)
# tensorboard
time_stamp = time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
tf.summary.scalar('loss', loss)
tf.summary.scalar('learning_rate', lr)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('./logs/' + args.save_model + '@' + time_stamp, tf.get_default_graph())
# save
g_list = tf.global_variables()
saver = tf.train.Saver(var_list=g_list)
save_model_dir = os.path.join('./models', args.save_model)
if not os.path.exists(save_model_dir):
os.makedirs(save_model_dir)
# create a session
with tf.Session() as sess:
# # restore checkpoints
# ckpt = tf.train.get_checkpoint_state('./normal')
# saver.restore(sess, ckpt.model_checkpoint_path)
# print("Model restored from: %s" % ('./models/' + 'normal'))
sess.run(tf.global_variables_initializer()) # init all variables
np.random.shuffle(x_train)
length = len(x_train)
global_cnt = 0
for epoch in range(args.n_epoch):
for i in range(0, length, args.batch_size):
global_cnt += 1
# train
mini_batch = x_train[i : i + args.batch_size]
feed_dict = {
placeholders['data']: mini_batch,
placeholders['is_training']: True,
placeholders['global_steps']: global_cnt,
}
_, train_loss, merged_summary = sess.run([train_op, loss, merged], feed_dict=feed_dict)
print("epoch: %d global_cnt: %d loss: %.3f" % (epoch, global_cnt, train_loss))
train_writer.add_summary(merged_summary, global_cnt)
# test
if global_cnt % args.test_interval == 0:
succ_num = 0
# batch read attack images
for j in range(0, attack_total.shape[0]):
attack_img = attack_total[j][np.newaxis, ...]
true_label = true_label_list[j]
feed_dict = {
placeholders['data']: attack_img,
placeholders['is_training']: False,
placeholders['global_steps']: global_cnt,
}
bct, img_clean, bc, rec_bc = sess.run([binary_code_test, y_test, binary_code, y], feed_dict=feed_dict)
# cv2.imwrite('clean_images/' + name_list[j], img_clean[0, :, :, :] * 255) # (224, 224, 3)
img_clean = transformer(img_clean[0]).numpy() # (3, 224, 224), float
label_clean_pred = np.argmax(fmodel.predictions(img_clean))
if true_label == label_clean_pred:
succ_num = succ_num + 1
succ_rate = succ_num / attack_total.shape[0]
print('Accuracy is %.3f after defending' % (succ_rate))
with open('./logs/' + args.save_model + '@' + time_stamp + '.txt' , 'a+') as f:
f.write('epoch: % d global_cnt: % d succ_num: %d succ_rate: %f \n' % (epoch, global_cnt, succ_num, succ_rate))
save_path = saver.save(sess, os.path.join(save_model_dir, 'epoch-{}'.format(epoch)), global_step=global_cnt)
print("Model saved in path: %s" % save_path)
total_time = time.time() - start_time
print('Total runtime %d hours %d minutes %.3f seconds' % (int(total_time / 3600), int(total_time % 3600 / 60), total_time % 60))
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
os._exit(1)