-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathL1_SVM.m
50 lines (41 loc) · 1.23 KB
/
L1_SVM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
%% L1 SVM experiment
clear;
clc;
close all;
diary off
addpath('abip');
Probname = {'australian'};
nprob = length(Probname);
Problist = [1:nprob];
alpha=1.7;
adapt=[5];
normalize=1;
scalar=[1];
for i=1:length(alpha)
for j=1:length(adapt)
params = struct('Problem', 'L1_SVM' );
for di = 1:length(Problist)
probID = Problist(di);
name = Probname{probID};
[y,X]=libsvmread(['./datasets/',name]);
y=label_reconstruction(y, name);
for k=1:length(scalar)
data.X=X;
data.y=y;
data.scalar=scalar(k);
% folder=['./L1_SVM_results/alpha',mat2str(alpha),'/',name,'/'];
% if exist(folder)==0
% mkdir(folder);
% end
% diary(['./L1_SVM_results/alpha',mat2str(alpha),'/',name,'/alpha',mat2str(alpha(i)),'adapt',mat2str(adapt(j)),'scalar',mat2str(data.scalar),...
% 'normalize',mat2str(normalize),'.txt']);
% diary on
[x,~,~,~] = abip(data,params);
% diary off
% clc;
end
% clear data X y
% clc;
end
end
end