Skip to content

Latest commit

 

History

History
148 lines (119 loc) · 7.27 KB

README.md

File metadata and controls

148 lines (119 loc) · 7.27 KB

Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC)

Tests arXiv Zenodo

Contents

Overview

This is the VSSR-MC algorithm for sampling surface reconstructions. VSSR-MC samples across both compositional and configurational spaces. It can interface with both a neural network potential (through ASE) or a classical potential (through ASE or LAMMPS). It is a key component of the Automatic Surface Reconstruction (AutoSurfRecon) pipeline described in the following work: Machine-learning-accelerated simulations to enable automatic surface reconstruction.

Cover image

System requirements

We recommend a computer with the following specs:

  • RAM: 16+ GB
  • CPU: 4+ cores, 3 GHz/core

To run with a neural network force field, a GPU is recommended. We ran on a single NVIDIA GeForce RTX 2080 Ti 11 GB GPU. The code has been tested on Linux Ubuntu 20.04.6 LTS but we expect it to work on other Linux distributions.

Setup

To start, run git clone [email protected]:learningmatter-mit/surface-sampling.git to your local directory or a workstation.

Conda environment

We recommend creating a new Conda environment. Following that, the Python dependencies for the code can be installed. In the surface-sampling directory, run the following commands:

conda create -n vssr-mc python=3.11
conda activate vssr-mc
conda install -c conda-forge kimpy lammps openkim-models
pip install -e .

If you're intending to contribute to the code, you can pip install -e '.[dev]' instead to also install the development dependencies.

To run with LAMMPS, add the following to ~/.bashrc or equivalent with appropriate paths and then source ~/.bashrc. conda would have installed LAMMPS as a dependency.

export LAMMPS_COMMAND="/path/to/lammps/src/lmp"
export LAMMPS_POTENTIALS="/path/to/lammps/potentials/"
export ASE_LAMMPSRUN_COMMAND="$LAMMPS_COMMAND"

The LAMMPS_COMMAND should point to the LAMMPS executable, which can be found here: /path/to/[vssr-mc-env]/bin/lmp. The LAMMPS_POTENTIALS directory should contain the LAMMPS potential files, which can found here: /path/to/[surface-sampling-repo]/mcmc/potentials/. The ASE_LAMMPSRUN_COMMAND should point to the same LAMMPS executable. More information can be found here: ASE LAMMPS.

If the conda installed LAMMPS does not work, you might have to install LAMMPS from source. More information can be found here: LAMMPS.

You might have to re-open/re-login to your terminal shell for the new settings to take effect.

Demo

A toy demo and other examples can be found in the tutorials/ folder.

tutorials/
├── example.ipynb
├── GaN_0001.ipynb
├── Si_111_5x5.ipynb
├── SrTiO3_001.ipynb
├── latent_space_clustering.ipynb
└── tutorials/prepare_surface.ipynb

More data/examples can be found in our Zenodo dataset.

Toy example of Cu(100)

A toy example to illustrate the use of VSSR-MC. It should only take about a few seconds to run. Refer to tutorials/example.ipynb.

GaN(0001) surface sampling with Tersoff potential

This example could take a few minutes to run. Refer to tutorials/GaN_0001.ipynb.

Si(111) 5x5 surface sampling with modified Stillinger–Weber potential

This example could take a few minutes to run. Refer to tutorials/Si_111_5x5.ipynb.

SrTiO3(001) surface sampling with machine learning potential

Demonstrates the integration of VSSR-MC with a neural network force field. This example could take a few minutes to run. Refer to tutorials/SrTiO3_001.ipynb.

Clustering MC-sampled surfaces in the latent space

Retrieves the neural network embeddings of VSSR-MC structures and performs clustering. This example should only take a minute to run. Refer to tutorials/latent_space_clustering.ipynb.

Preparing surface from a bulk structure

This example demonstrates how to cut a surface from a bulk structure. Refer to tutorials/prepare_surface.ipynb.

Scripts

Scripts can be found in the scripts/ folder, including:

scripts/
├── sample_surface.py
└── clustering.py

The arguments for the scripts can be found by running python scripts/sample_surface.py -h or python scripts/clustering.py -h.

Example usage:

Original VSSR-MC with PaiNN model trained on SrTiO3(001) surfaces

python scripts/sample_surface.py --run_name "SrTiO3_001_painn" \
--starting_structure_path "tutorials/data/SrTiO3_001/SrTiO3_001_2x2_pristine_slab.pkl" \
--model_type "PaiNN" --model_paths "tutorials/data/SrTiO3_001/nff/model01/best_model" \
"tutorials/data/SrTiO3_001/nff/model02/best_model" \
"tutorials/data/SrTiO3_001/nff/model03/best_model" \
--settings_path "scripts/configs/sample_config_painn.json"

Pre-trained "foundational" CHGNet model on SrTiO3(001) surfaces

python scripts/sample_surface.py --run_name "SrTiO3_001_chgnet" \
--starting_structure_path "tutorials/data/SrTiO3_001/SrTiO3_001_2x2_pristine_slab.pkl" \
--model_type "CHGNetNFF" --settings_path "scripts/configs/sample_config_chgnet.json"

Latent space clustering

python scripts/clustering.py --file_paths "tutorials/data/SrTiO3_001/SrTiO3_001_2x2_mcmc_structures_100.pkl" \
--save_folder "SrTiO3_001/clustering" --nff_model_type "PaiNN" \
--nff_paths "tutorials/data/SrTiO3_001/nff/model01/best_model" \
"tutorials/data/SrTiO3_001/nff/model02/best_model" \
"tutorials/data/SrTiO3_001/nff/model03/best_model" \
--clustering_metric "force_std" --cutoff_criterion "distance" \
--clustering_cutoff 0.2 --nff_device "cuda"

Citation

@article{duMachinelearningacceleratedSimulationsEnable2023,
  title = {Machine-Learning-Accelerated Simulations to Enable Automatic Surface Reconstruction},
  author = {Du, Xiaochen and Damewood, James K. and Lunger, Jaclyn R. and Millan, Reisel and Yildiz, Bilge and Li, Lin and {G{\'o}mez-Bombarelli}, Rafael},
  year = {2023},
  month = dec,
  journal = {Nature Computational Science},
  pages = {1--11},
  publisher = {Nature Publishing Group},
  issn = {2662-8457},
  doi = {10.1038/s43588-023-00571-7},
  urldate = {2023-12-07},
  keywords = {Computational methods,Computational science,Software,Surface chemistry}
}

Development & Bugs

VSSR-MC is under active development, if you encounter any bugs in installation and usage, please open an issue. We appreciate your contributions!