-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoetherian.lean
661 lines (579 loc) · 29.8 KB
/
noetherian.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/-
Copyright (c) 2018 Mario Carneiro and Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import algebraic_geometry.prime_spectrum
import data.multiset.finset_ops
import linear_algebra.linear_independent
import order.order_iso_nat
import order.compactly_generated
import ring_theory.ideal.operations
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodule M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `fg N : Prop` is the assertion that `N` is finitely generated as an `R`-module.
* `is_noetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul` is Nakayama's lemma, in the following form:
if N is a finitely generated submodule of an ambient R-module M and I is an ideal of R
such that N ⊆ IN, then there exists r ∈ 1 + I such that rN = 0.
* `is_noetherian_iff_well_founded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `ring_theory.polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open set
open_locale big_operators
namespace submodule
variables {R : Type*} {M : Type*} [semiring R] [add_comm_monoid M] [semimodule R M]
/-- A submodule of `M` is finitely generated if it is the span of a finite subset of `M`. -/
def fg (N : submodule R M) : Prop := ∃ S : finset M, submodule.span R ↑S = N
theorem fg_def {N : submodule R M} :
N.fg ↔ ∃ S : set M, finite S ∧ span R S = N :=
⟨λ ⟨t, h⟩, ⟨_, finset.finite_to_set t, h⟩, begin
rintro ⟨t', h, rfl⟩,
rcases finite.exists_finset_coe h with ⟨t, rfl⟩,
exact ⟨t, rfl⟩
end⟩
/-- Nakayama's Lemma. Atiyah-Macdonald 2.5, Eisenbud 4.7, Matsumura 2.2, Stacks 00DV -/
theorem exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul {R : Type*} [comm_ring R]
{M : Type*} [add_comm_group M] [module R M]
(I : ideal R) (N : submodule R M) (hn : N.fg) (hin : N ≤ I • N) :
∃ r : R, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = (0 : M) :=
begin
rw fg_def at hn, rcases hn with ⟨s, hfs, hs⟩,
have : ∃ r : R, r - 1 ∈ I ∧ N ≤ (I • span R s).comap (linear_map.lsmul R M r) ∧ s ⊆ N,
{ refine ⟨1, _, _, _⟩,
{ rw sub_self, exact I.zero_mem },
{ rw [hs], intros n hn, rw [mem_comap], change (1:R) • n ∈ I • N, rw one_smul, exact hin hn },
{ rw [← span_le, hs], exact le_refl N } },
clear hin hs, revert this,
refine set.finite.dinduction_on hfs (λ H, _) (λ i s his hfs ih H, _),
{ rcases H with ⟨r, hr1, hrn, hs⟩, refine ⟨r, hr1, λ n hn, _⟩, specialize hrn hn,
rwa [mem_comap, span_empty, smul_bot, mem_bot] at hrn },
apply ih, rcases H with ⟨r, hr1, hrn, hs⟩,
rw [← set.singleton_union, span_union, smul_sup] at hrn,
rw [set.insert_subset] at hs,
have : ∃ c : R, c - 1 ∈ I ∧ c • i ∈ I • span R s,
{ specialize hrn hs.1, rw [mem_comap, mem_sup] at hrn,
rcases hrn with ⟨y, hy, z, hz, hyz⟩, change y + z = r • i at hyz,
rw mem_smul_span_singleton at hy, rcases hy with ⟨c, hci, rfl⟩,
use r-c, split,
{ rw [sub_right_comm], exact I.sub_mem hr1 hci },
{ rw [sub_smul, ← hyz, add_sub_cancel'], exact hz } },
rcases this with ⟨c, hc1, hci⟩, refine ⟨c * r, _, _, hs.2⟩,
{ rw [← ideal.quotient.eq, ring_hom.map_one] at hr1 hc1 ⊢,
rw [ring_hom.map_mul, hc1, hr1, mul_one] },
{ intros n hn, specialize hrn hn, rw [mem_comap, mem_sup] at hrn,
rcases hrn with ⟨y, hy, z, hz, hyz⟩, change y + z = r • n at hyz,
rw mem_smul_span_singleton at hy, rcases hy with ⟨d, hdi, rfl⟩,
change _ • _ ∈ I • span R s,
rw [mul_smul, ← hyz, smul_add, smul_smul, mul_comm, mul_smul],
exact add_mem _ (smul_mem _ _ hci) (smul_mem _ _ hz) }
end
theorem fg_bot : (⊥ : submodule R M).fg :=
⟨∅, by rw [finset.coe_empty, span_empty]⟩
theorem fg_sup {N₁ N₂ : submodule R M}
(hN₁ : N₁.fg) (hN₂ : N₂.fg) : (N₁ ⊔ N₂).fg :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁, ⟨t₂, ht₂⟩ := fg_def.1 hN₂ in
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [span_union, ht₁.2, ht₂.2]⟩
variables {P : Type*} [add_comm_monoid P] [semimodule R P]
variables {f : M →ₗ[R] P}
theorem fg_map {N : submodule R M} (hs : N.fg) : (N.map f).fg :=
let ⟨t, ht⟩ := fg_def.1 hs in fg_def.2 ⟨f '' t, ht.1.image _, by rw [span_image, ht.2]⟩
lemma fg_of_fg_map {R M P : Type*} [ring R] [add_comm_group M] [module R M]
[add_comm_group P] [module R P] (f : M →ₗ[R] P) (hf : f.ker = ⊥) {N : submodule R M}
(hfn : (N.map f).fg) : N.fg :=
let ⟨t, ht⟩ := hfn in ⟨t.preimage f $ λ x _ y _ h, linear_map.ker_eq_bot.1 hf h,
linear_map.map_injective hf $ by { rw [map_span, finset.coe_preimage,
set.image_preimage_eq_inter_range, set.inter_eq_self_of_subset_left, ht],
rw [← linear_map.range_coe, ← span_le, ht, ← map_top], exact map_mono le_top }⟩
lemma fg_top {R M : Type*} [ring R] [add_comm_group M] [module R M]
(N : submodule R M) : (⊤ : submodule R N).fg ↔ N.fg :=
⟨λ h, N.range_subtype ▸ map_top N.subtype ▸ fg_map h,
λ h, fg_of_fg_map N.subtype N.ker_subtype $ by rwa [map_top, range_subtype]⟩
lemma fg_of_linear_equiv (e : M ≃ₗ[R] P) (h : (⊤ : submodule R P).fg) :
(⊤ : submodule R M).fg :=
e.symm.range ▸ map_top (e.symm : P →ₗ[R] M) ▸ fg_map h
theorem fg_prod {sb : submodule R M} {sc : submodule R P}
(hsb : sb.fg) (hsc : sc.fg) : (sb.prod sc).fg :=
let ⟨tb, htb⟩ := fg_def.1 hsb, ⟨tc, htc⟩ := fg_def.1 hsc in
fg_def.2 ⟨linear_map.inl R M P '' tb ∪ linear_map.inr R M P '' tc,
(htb.1.image _).union (htc.1.image _),
by rw [linear_map.span_inl_union_inr, htb.2, htc.2]⟩
/-- If 0 → M' → M → M'' → 0 is exact and M' and M'' are
finitely generated then so is M. -/
theorem fg_of_fg_map_of_fg_inf_ker {R M P : Type*} [ring R] [add_comm_group M] [module R M]
[add_comm_group P] [module R P] (f : M →ₗ[R] P)
{s : submodule R M} (hs1 : (s.map f).fg) (hs2 : (s ⊓ f.ker).fg) : s.fg :=
begin
haveI := classical.dec_eq R, haveI := classical.dec_eq M, haveI := classical.dec_eq P,
cases hs1 with t1 ht1, cases hs2 with t2 ht2,
have : ∀ y ∈ t1, ∃ x ∈ s, f x = y,
{ intros y hy,
have : y ∈ map f s, { rw ← ht1, exact subset_span hy },
rcases mem_map.1 this with ⟨x, hx1, hx2⟩,
exact ⟨x, hx1, hx2⟩ },
have : ∃ g : P → M, ∀ y ∈ t1, g y ∈ s ∧ f (g y) = y,
{ choose g hg1 hg2,
existsi λ y, if H : y ∈ t1 then g y H else 0,
intros y H, split,
{ simp only [dif_pos H], apply hg1 },
{ simp only [dif_pos H], apply hg2 } },
cases this with g hg, clear this,
existsi t1.image g ∪ t2,
rw [finset.coe_union, span_union, finset.coe_image],
apply le_antisymm,
{ refine sup_le (span_le.2 $ image_subset_iff.2 _) (span_le.2 _),
{ intros y hy, exact (hg y hy).1 },
{ intros x hx, have := subset_span hx,
rw ht2 at this,
exact this.1 } },
intros x hx,
have : f x ∈ map f s, { rw mem_map, exact ⟨x, hx, rfl⟩ },
rw [← ht1,← set.image_id ↑t1, finsupp.mem_span_iff_total] at this,
rcases this with ⟨l, hl1, hl2⟩,
refine mem_sup.2 ⟨(finsupp.total M M R id).to_fun ((finsupp.lmap_domain R R g : (P →₀ R) → M →₀ R) l), _,
x - finsupp.total M M R id ((finsupp.lmap_domain R R g : (P →₀ R) → M →₀ R) l),
_, add_sub_cancel'_right _ _⟩,
{ rw [← set.image_id (g '' ↑t1), finsupp.mem_span_iff_total], refine ⟨_, _, rfl⟩,
haveI : inhabited P := ⟨0⟩,
rw [← finsupp.lmap_domain_supported _ _ g, mem_map],
refine ⟨l, hl1, _⟩,
refl, },
rw [ht2, mem_inf], split,
{ apply s.sub_mem hx,
rw [finsupp.total_apply, finsupp.lmap_domain_apply, finsupp.sum_map_domain_index],
refine s.sum_mem _,
{ intros y hy, exact s.smul_mem _ (hg y (hl1 hy)).1 },
{ exact zero_smul _ }, { exact λ _ _ _, add_smul _ _ _ } },
{ rw [linear_map.mem_ker, f.map_sub, ← hl2],
rw [finsupp.total_apply, finsupp.total_apply, finsupp.lmap_domain_apply],
rw [finsupp.sum_map_domain_index, finsupp.sum, finsupp.sum, f.map_sum],
rw sub_eq_zero,
refine finset.sum_congr rfl (λ y hy, _),
unfold id,
rw [f.map_smul, (hg y (hl1 hy)).2],
{ exact zero_smul _ }, { exact λ _ _ _, add_smul _ _ _ } }
end
lemma singleton_span_is_compact_element (x : M) :
complete_lattice.is_compact_element (span R {x} : submodule R M) :=
begin
rw complete_lattice.is_compact_element_iff_le_of_directed_Sup_le,
intros d hemp hdir hsup,
have : x ∈ Sup d, from (le_def.mp hsup) (mem_span_singleton_self x),
obtain ⟨y, ⟨hyd, hxy⟩⟩ := (mem_Sup_of_directed hemp hdir).mp this,
exact ⟨y, ⟨hyd, by simpa only [span_le, singleton_subset_iff]⟩⟩,
end
/-- Finitely generated submodules are precisely compact elements in the submodule lattice -/
theorem fg_iff_compact (s : submodule R M) : s.fg ↔ complete_lattice.is_compact_element s :=
begin
classical,
-- Introduce shorthand for span of an element
let sp : M → submodule R M := λ a, span R {a},
-- Trivial rewrite lemma; a small hack since simp (only) & rw can't accomplish this smoothly.
have supr_rw : ∀ t : finset M, (⨆ x ∈ t, sp x) = (⨆ x ∈ (↑t : set M), sp x), from λ t, by refl,
split,
{ rintro ⟨t, rfl⟩,
rw [span_eq_supr_of_singleton_spans, ←supr_rw, ←(finset.sup_eq_supr t sp)],
apply complete_lattice.finset_sup_compact_of_compact,
exact λ n _, singleton_span_is_compact_element n, },
{ intro h,
-- s is the Sup of the spans of its elements.
have sSup : s = Sup (sp '' ↑s),
by rw [Sup_eq_supr, supr_image, ←span_eq_supr_of_singleton_spans, eq_comm, span_eq],
-- by h, s is then below (and equal to) the sup of the spans of finitely many elements.
obtain ⟨u, ⟨huspan, husup⟩⟩ := h (sp '' ↑s) (le_of_eq sSup),
have ssup : s = u.sup id,
{ suffices : u.sup id ≤ s, from le_antisymm husup this,
rw [sSup, finset.sup_eq_Sup], exact Sup_le_Sup huspan, },
obtain ⟨t, ⟨hts, rfl⟩⟩ := finset.subset_image_iff.mp huspan,
rw [←finset.sup_finset_image, function.comp.left_id, finset.sup_eq_supr, supr_rw,
←span_eq_supr_of_singleton_spans, eq_comm] at ssup,
exact ⟨t, ssup⟩, },
end
instance : is_compactly_generated (submodule R M) :=
⟨λ s, ⟨(λ x, span R {x}) '' s, ⟨λ t ht, begin
rcases (set.mem_image _ _ _).1 ht with ⟨x, hx, rfl⟩,
apply singleton_span_is_compact_element,
end, by rw [Sup_eq_supr, supr_image, ←span_eq_supr_of_singleton_spans, span_eq]⟩⟩⟩
end submodule
/--
`is_noetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
class is_noetherian (R M) [semiring R] [add_comm_monoid M] [semimodule R M] : Prop :=
(noetherian : ∀ (s : submodule R M), s.fg)
section
variables {R : Type*} {M : Type*} {P : Type*}
variables [ring R] [add_comm_group M] [add_comm_group P]
variables [module R M] [module R P]
open is_noetherian
include R
theorem is_noetherian_submodule {N : submodule R M} :
is_noetherian R N ↔ ∀ s : submodule R M, s ≤ N → s.fg :=
⟨λ ⟨hn⟩, λ s hs, have s ≤ N.subtype.range, from (N.range_subtype).symm ▸ hs,
linear_map.map_comap_eq_self this ▸ submodule.fg_map (hn _),
λ h, ⟨λ s, submodule.fg_of_fg_map_of_fg_inf_ker N.subtype (h _ $ submodule.map_subtype_le _ _) $
by rw [submodule.ker_subtype, inf_bot_eq]; exact submodule.fg_bot⟩⟩
theorem is_noetherian_submodule_left {N : submodule R M} :
is_noetherian R N ↔ ∀ s : submodule R M, (N ⊓ s).fg :=
is_noetherian_submodule.trans
⟨λ H s, H _ inf_le_left, λ H s hs, (inf_of_le_right hs) ▸ H _⟩
theorem is_noetherian_submodule_right {N : submodule R M} :
is_noetherian R N ↔ ∀ s : submodule R M, (s ⊓ N).fg :=
is_noetherian_submodule.trans
⟨λ H s, H _ inf_le_right, λ H s hs, (inf_of_le_left hs) ▸ H _⟩
instance is_noetherian_submodule' [is_noetherian R M] (N : submodule R M) : is_noetherian R N :=
is_noetherian_submodule.2 $ λ _ _, is_noetherian.noetherian _
variable (M)
theorem is_noetherian_of_surjective (f : M →ₗ[R] P) (hf : f.range = ⊤)
[is_noetherian R M] : is_noetherian R P :=
⟨λ s, have (s.comap f).map f = s, from linear_map.map_comap_eq_self $ hf.symm ▸ le_top,
this ▸ submodule.fg_map $ noetherian _⟩
variable {M}
theorem is_noetherian_of_linear_equiv (f : M ≃ₗ[R] P)
[is_noetherian R M] : is_noetherian R P :=
is_noetherian_of_surjective _ f.to_linear_map f.range
lemma is_noetherian_of_is_noetherian_top
(h : is_noetherian R (⊤ : submodule R M)) : is_noetherian R M :=
is_noetherian_of_linear_equiv (linear_equiv.of_top _ rfl)
lemma is_noetherian_of_injective [is_noetherian R P] (f : M →ₗ[R] P) (hf : f.ker = ⊥) :
is_noetherian R M :=
is_noetherian_of_linear_equiv (linear_equiv.of_injective f hf).symm
lemma fg_of_injective [is_noetherian R P] {N : submodule R M} (f : M →ₗ[R] P) (hf : f.ker = ⊥) :
N.fg :=
@@is_noetherian.noetherian _ _ _ (is_noetherian_of_injective f hf) N
instance is_noetherian_prod [is_noetherian R M]
[is_noetherian R P] : is_noetherian R (M × P) :=
⟨λ s, submodule.fg_of_fg_map_of_fg_inf_ker (linear_map.snd R M P) (noetherian _) $
have s ⊓ linear_map.ker (linear_map.snd R M P) ≤ linear_map.range (linear_map.inl R M P),
from λ x ⟨hx1, hx2⟩, ⟨x.1, trivial, prod.ext rfl $ eq.symm $ linear_map.mem_ker.1 hx2⟩,
linear_map.map_comap_eq_self this ▸ submodule.fg_map (noetherian _)⟩
instance is_noetherian_pi {R ι : Type*} {M : ι → Type*} [ring R]
[Π i, add_comm_group (M i)] [Π i, module R (M i)] [fintype ι]
[∀ i, is_noetherian R (M i)] : is_noetherian R (Π i, M i) :=
begin
haveI := classical.dec_eq ι,
suffices : ∀ s : finset ι, is_noetherian R (Π i : (↑s : set ι), M i),
{ letI := this finset.univ,
refine @is_noetherian_of_linear_equiv _ _ _ _ _ _ _ _
⟨_, _, _, _, _, _⟩ (this finset.univ),
{ exact λ f i, f ⟨i, finset.mem_univ _⟩ },
{ intros, ext, refl },
{ intros, ext, refl },
{ exact λ f i, f i.1 },
{ intro, ext ⟨⟩, refl },
{ intro, ext i, refl } },
intro s,
induction s using finset.induction with a s has ih,
{ split, intro s, convert submodule.fg_bot, apply eq_bot_iff.2,
intros x hx, refine (submodule.mem_bot R).2 _, ext i, cases i.2 },
refine @is_noetherian_of_linear_equiv _ _ _ _ _ _ _ _
⟨_, _, _, _, _, _⟩ (@is_noetherian_prod _ (M a) _ _ _ _ _ _ _ ih),
{ exact λ f i, or.by_cases (finset.mem_insert.1 i.2)
(λ h : i.1 = a, show M i.1, from (eq.rec_on h.symm f.1))
(λ h : i.1 ∈ s, show M i.1, from f.2 ⟨i.1, h⟩) },
{ intros f g, ext i, unfold or.by_cases, cases i with i hi,
rcases finset.mem_insert.1 hi with rfl | h,
{ change _ = _ + _, simp only [dif_pos], refl },
{ change _ = _ + _, have : ¬i = a, { rintro rfl, exact has h },
simp only [dif_neg this, dif_pos h], refl } },
{ intros c f, ext i, unfold or.by_cases, cases i with i hi,
rcases finset.mem_insert.1 hi with rfl | h,
{ change _ = c • _, simp only [dif_pos], refl },
{ change _ = c • _, have : ¬i = a, { rintro rfl, exact has h },
simp only [dif_neg this, dif_pos h], refl } },
{ exact λ f, (f ⟨a, finset.mem_insert_self _ _⟩, λ i, f ⟨i.1, finset.mem_insert_of_mem i.2⟩) },
{ intro f, apply prod.ext,
{ simp only [or.by_cases, dif_pos] },
{ ext ⟨i, his⟩,
have : ¬i = a, { rintro rfl, exact has his },
dsimp only [or.by_cases], change i ∈ s at his,
rw [dif_neg this, dif_pos his] } },
{ intro f, ext ⟨i, hi⟩,
rcases finset.mem_insert.1 hi with rfl | h,
{ simp only [or.by_cases, dif_pos], refl },
{ have : ¬i = a, { rintro rfl, exact has h },
simp only [or.by_cases, dif_neg this, dif_pos h], refl } }
end
end
open is_noetherian submodule function
theorem is_noetherian_iff_well_founded
{R M} [ring R] [add_comm_group M] [module R M] :
is_noetherian R M ↔ well_founded ((>) : submodule R M → submodule R M → Prop) :=
⟨λ h, begin
refine rel_embedding.well_founded_iff_no_descending_seq.2 _,
rintro ⟨⟨N, hN⟩⟩,
let Q := ⨆ n, N n,
resetI,
rcases submodule.fg_def.1 (noetherian Q) with ⟨t, h₁, h₂⟩,
have hN' : ∀ {a b}, a ≤ b → N a ≤ N b :=
λ a b, (strict_mono.le_iff_le (λ _ _, hN.2)).2,
have : t ⊆ ⋃ i, (N i : set M),
{ rw [← submodule.coe_supr_of_directed N _],
{ show t ⊆ Q, rw ← h₂,
apply submodule.subset_span },
{ exact λ i j, ⟨max i j,
hN' (le_max_left _ _),
hN' (le_max_right _ _)⟩ } },
simp [subset_def] at this,
choose f hf using show ∀ x : t, ∃ (i : ℕ), x.1 ∈ N i, { simpa },
cases h₁ with h₁,
let A := finset.sup (@finset.univ t h₁) f,
have : Q ≤ N A,
{ rw ← h₂, apply submodule.span_le.2,
exact λ x h, hN' (finset.le_sup (@finset.mem_univ t h₁ _))
(hf ⟨x, h⟩) },
exact not_le_of_lt (hN.2 (nat.lt_succ_self A))
(le_trans (le_supr _ _) this)
end,
begin
assume h, split, assume N,
suffices : ∀ P ≤ N, ∃ s, finite s ∧ P ⊔ submodule.span R s = N,
{ rcases this ⊥ bot_le with ⟨s, hs, e⟩,
exact submodule.fg_def.2 ⟨s, hs, by simpa using e⟩ },
refine λ P, h.induction P _, intros P IH PN,
letI := classical.dec,
by_cases h : ∀ x, x ∈ N → x ∈ P,
{ cases le_antisymm PN h, exact ⟨∅, by simp⟩ },
{ simp [not_forall] at h,
rcases h with ⟨x, h, h₂⟩,
have : ¬P ⊔ submodule.span R {x} ≤ P,
{ intro hn, apply h₂,
have := le_trans le_sup_right hn,
exact submodule.span_le.1 this (mem_singleton x) },
rcases IH (P ⊔ submodule.span R {x})
⟨@le_sup_left _ _ P _, this⟩
(sup_le PN (submodule.span_le.2 (by simpa))) with ⟨s, hs, hs₂⟩,
refine ⟨insert x s, hs.insert x, _⟩,
rw [← hs₂, sup_assoc, ← submodule.span_union], simp }
end⟩
lemma well_founded_submodule_gt (R M) [ring R] [add_comm_group M] [module R M] :
∀ [is_noetherian R M], well_founded ((>) : submodule R M → submodule R M → Prop) :=
is_noetherian_iff_well_founded.mp
lemma finite_of_linear_independent {R M} [comm_ring R] [nontrivial R] [add_comm_group M] [module R M]
[is_noetherian R M] {s : set M} (hs : linear_independent R (coe : s → M)) : s.finite :=
begin
refine classical.by_contradiction (λ hf, rel_embedding.well_founded_iff_no_descending_seq.1
(well_founded_submodule_gt R M) ⟨_⟩),
have f : ℕ ↪ s, from @infinite.nat_embedding s ⟨λ f, hf ⟨f⟩⟩,
have : ∀ n, (coe ∘ f) '' {m | m ≤ n} ⊆ s,
{ rintros n x ⟨y, hy₁, hy₂⟩, subst hy₂, exact (f y).2 },
have : ∀ a b : ℕ, a ≤ b ↔
span R ((coe ∘ f) '' {m | m ≤ a}) ≤ span R ((coe ∘ f) '' {m | m ≤ b}),
{ assume a b,
rw [span_le_span_iff hs (this a) (this b),
set.image_subset_image_iff (subtype.coe_injective.comp f.injective),
set.subset_def],
exact ⟨λ hab x (hxa : x ≤ a), le_trans hxa hab, λ hx, hx a (le_refl a)⟩ },
exact ⟨⟨λ n, span R ((coe ∘ f) '' {m | m ≤ n}),
λ x y, by simp [le_antisymm_iff, (this _ _).symm] {contextual := tt}⟩,
by dsimp [gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
end
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/
theorem set_has_maximal_iff_noetherian {R M} [ring R] [add_comm_group M] [module R M] :
(∀ a : set $ submodule R M, a.nonempty → ∃ M' ∈ a, ∀ I ∈ a, M' ≤ I → I = M') ↔ is_noetherian R M :=
by rw [is_noetherian_iff_well_founded, well_founded.well_founded_iff_has_max']
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
lemma is_noetherian.induction {R M} [ring R] [add_comm_group M] [module R M] [is_noetherian R M]
{P : submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I)
(I : submodule R M) : P I :=
well_founded.recursion (well_founded_submodule_gt R M) I hgt
/--
A ring is Noetherian if it is Noetherian as a module over itself,
i.e. all its ideals are finitely generated.
-/
class is_noetherian_ring (R) [ring R] extends is_noetherian R R : Prop
theorem is_noetherian_ring_iff {R} [ring R] : is_noetherian_ring R ↔ is_noetherian R R :=
⟨λ h, h.1, @is_noetherian_ring.mk _ _⟩
@[priority 80] -- see Note [lower instance priority]
instance ring.is_noetherian_of_fintype (R M) [fintype M] [ring R] [add_comm_group M] [module R M] :
is_noetherian R M :=
by letI := classical.dec; exact
⟨assume s, ⟨to_finset s, by rw [set.coe_to_finset, submodule.span_eq]⟩⟩
theorem ring.is_noetherian_of_zero_eq_one {R} [ring R] (h01 : (0 : R) = 1) : is_noetherian_ring R :=
by haveI := subsingleton_of_zero_eq_one h01;
haveI := fintype.of_subsingleton (0:R);
exact is_noetherian_ring_iff.2 (ring.is_noetherian_of_fintype R R)
theorem is_noetherian_of_submodule_of_noetherian (R M) [ring R] [add_comm_group M] [module R M]
(N : submodule R M) (h : is_noetherian R M) : is_noetherian R N :=
begin
rw is_noetherian_iff_well_founded at h ⊢,
exact order_embedding.well_founded (submodule.map_subtype.order_embedding N).dual h,
end
theorem is_noetherian_of_is_scalar_tower (R) {S M} [comm_ring R] [ring S]
[add_comm_group M] [algebra R S] [module S M] [module R M] [is_scalar_tower R S M]
(h : is_noetherian R M) : is_noetherian S M :=
begin
rw is_noetherian_iff_well_founded at h ⊢,
exact (@scalar_tower_order_embedding R _ S _ _ M _ _ _ _).dual.well_founded h
end
theorem is_noetherian_of_quotient_of_noetherian (R) [ring R] (M) [add_comm_group M] [module R M]
(N : submodule R M) (h : is_noetherian R M) : is_noetherian R N.quotient :=
begin
rw is_noetherian_iff_well_founded at h ⊢,
exact order_embedding.well_founded (submodule.comap_mkq.order_embedding N).dual h,
end
theorem is_noetherian_of_fg_of_noetherian {R M} [ring R] [add_comm_group M] [module R M]
(N : submodule R M) [is_noetherian_ring R] (hN : N.fg) : is_noetherian R N :=
let ⟨s, hs⟩ := hN in
begin
haveI := classical.dec_eq M,
haveI := classical.dec_eq R,
letI : is_noetherian R R := by apply_instance,
have : ∀ x ∈ s, x ∈ N, from λ x hx, hs ▸ submodule.subset_span hx,
refine @@is_noetherian_of_surjective ((↑s : set M) → R) _ _ _ (pi.semimodule _ _ _)
_ _ _ is_noetherian_pi,
{ fapply linear_map.mk,
{ exact λ f, ⟨∑ i in s.attach, f i • i.1, N.sum_mem (λ c _, N.smul_mem _ $ this _ c.2)⟩ },
{ intros f g, apply subtype.eq,
change ∑ i in s.attach, (f i + g i) • _ = _,
simp only [add_smul, finset.sum_add_distrib], refl },
{ intros c f, apply subtype.eq,
change ∑ i in s.attach, (c • f i) • _ = _,
simp only [smul_eq_mul, mul_smul],
exact finset.smul_sum.symm } },
rw linear_map.range_eq_top,
rintro ⟨n, hn⟩, change n ∈ N at hn,
rw [← hs, ← set.image_id ↑s, finsupp.mem_span_iff_total] at hn,
rcases hn with ⟨l, hl1, hl2⟩,
refine ⟨λ x, l x, subtype.ext _⟩,
change ∑ i in s.attach, l i • (i : M) = n,
rw [@finset.sum_attach M M s _ (λ i, l i • i), ← hl2,
finsupp.total_apply, finsupp.sum, eq_comm],
refine finset.sum_subset hl1 (λ x _ hx, _),
rw [finsupp.not_mem_support_iff.1 hx, zero_smul]
end
lemma is_noetherian_of_fg_of_noetherian' {R M} [ring R] [add_comm_group M] [module R M]
[is_noetherian_ring R] (h : (⊤ : submodule R M).fg) : is_noetherian R M :=
have is_noetherian R (⊤ : submodule R M), from is_noetherian_of_fg_of_noetherian _ h,
by exactI is_noetherian_of_linear_equiv (linear_equiv.of_top (⊤ : submodule R M) rfl)
/-- In a module over a noetherian ring, the submodule generated by finitely many vectors is
noetherian. -/
theorem is_noetherian_span_of_finite (R) {M} [ring R] [add_comm_group M] [module R M]
[is_noetherian_ring R] {A : set M} (hA : finite A) : is_noetherian R (submodule.span R A) :=
is_noetherian_of_fg_of_noetherian _ (submodule.fg_def.mpr ⟨A, hA, rfl⟩)
theorem is_noetherian_ring_of_surjective (R) [comm_ring R] (S) [comm_ring S]
(f : R →+* S) (hf : function.surjective f)
[H : is_noetherian_ring R] : is_noetherian_ring S :=
begin
rw [is_noetherian_ring_iff, is_noetherian_iff_well_founded] at H ⊢,
exact order_embedding.well_founded (ideal.order_embedding_of_surjective f hf).dual H,
end
section
local attribute [instance] subset.comm_ring
instance is_noetherian_ring_set_range {R} [comm_ring R] {S} [comm_ring S] (f : R →+* S)
[is_noetherian_ring R] : is_noetherian_ring (set.range f) :=
is_noetherian_ring_of_surjective R (set.range f) (f.cod_restrict (set.range f) set.mem_range_self)
set.surjective_onto_range
end
instance is_noetherian_ring_range {R} [comm_ring R] {S} [comm_ring S] (f : R →+* S)
[is_noetherian_ring R] : is_noetherian_ring f.range :=
is_noetherian_ring_of_surjective R f.range (f.cod_restrict' f.range f.mem_range_self)
f.surjective_onto_range
theorem is_noetherian_ring_of_ring_equiv (R) [comm_ring R] {S} [comm_ring S]
(f : R ≃+* S) [is_noetherian_ring R] : is_noetherian_ring S :=
is_noetherian_ring_of_surjective R S f.to_ring_hom f.to_equiv.surjective
namespace submodule
variables {R : Type*} {A : Type*} [comm_ring R] [ring A] [algebra R A]
variables (M N : submodule R A)
theorem fg_mul (hm : M.fg) (hn : N.fg) : (M * N).fg :=
let ⟨m, hfm, hm⟩ := fg_def.1 hm, ⟨n, hfn, hn⟩ := fg_def.1 hn in
fg_def.2 ⟨m * n, hfm.mul hfn, span_mul_span R m n ▸ hm ▸ hn ▸ rfl⟩
lemma fg_pow (h : M.fg) (n : ℕ) : (M ^ n).fg :=
nat.rec_on n
(⟨{1}, by simp [one_eq_span]⟩)
(λ n ih, by simpa [pow_succ] using fg_mul _ _ h ih)
end submodule
section primes
variables {R : Type*} [comm_ring R] [is_noetherian_ring R]
/--In a noetherian ring, every ideal contains a product of prime ideals
([samuel, § 3.3, Lemma 3])-/
lemma exists_prime_spectrum_prod_le (I : ideal R) :
∃ (Z : multiset (prime_spectrum R)), multiset.prod (Z.map (coe : subtype _ → ideal R)) ≤ I :=
begin
refine is_noetherian.induction (λ (M : ideal R) hgt, _) I,
by_cases h_prM : M.is_prime,
{ use {⟨M, h_prM⟩},
rw [multiset.map_singleton, multiset.singleton_eq_singleton, multiset.prod_singleton,
subtype.coe_mk],
exact le_rfl },
by_cases htop : M = ⊤,
{ rw htop,
exact ⟨0, le_top⟩ },
have lt_add : ∀ z ∉ M, M < M + span R {z},
{ intros z hz,
refine lt_of_le_of_ne le_sup_left (λ m_eq, hz _),
rw m_eq,
exact mem_sup_right (mem_span_singleton_self z) },
obtain ⟨x, hx, y, hy, hxy⟩ := (ideal.not_is_prime_iff.mp h_prM).resolve_left htop,
obtain ⟨Wx, h_Wx⟩ := hgt (M + span R {x}) (lt_add _ hx),
obtain ⟨Wy, h_Wy⟩ := hgt (M + span R {y}) (lt_add _ hy),
use Wx + Wy,
rw [multiset.map_add, multiset.prod_add],
apply le_trans (submodule.mul_le_mul h_Wx h_Wy),
rw add_mul,
apply sup_le (show M * (M + span R {y}) ≤ M, from ideal.mul_le_right),
rw mul_add,
apply sup_le (show span R {x} * M ≤ M, from ideal.mul_le_left),
rwa [span_mul_span, singleton_mul_singleton, span_singleton_le_iff_mem],
end
variables {A : Type*} [integral_domain A] [is_noetherian_ring A]
/--In a noetherian integral domain which is not a field, every non-zero ideal contains a non-zero
product of prime ideals; in a field, the whole ring is a non-zero ideal containing only 0 as product
or prime ideals ([samuel, § 3.3, Lemma 3])
-/
lemma exists_prime_spectrum_prod_le_and_ne_bot_of_domain (h_fA : ¬ is_field A) {I : ideal A} (h_nzI: I ≠ ⊥) :
∃ (Z : multiset (prime_spectrum A)), multiset.prod (Z.map (coe : subtype _ → ideal A)) ≤ I ∧
multiset.prod (Z.map (coe : subtype _ → ideal A)) ≠ ⊥ :=
begin
revert h_nzI,
refine is_noetherian.induction (λ (M : ideal A) hgt, _) I,
intro h_nzM,
have hA_nont : nontrivial A,
apply is_integral_domain.to_nontrivial (integral_domain.to_is_integral_domain A),
by_cases h_topM : M = ⊤,
{ rcases h_topM with rfl,
obtain ⟨p_id, h_nzp, h_pp⟩ : ∃ (p : ideal A), p ≠ ⊥ ∧ p.is_prime,
{ apply ring.not_is_field_iff_exists_prime.mp h_fA },
use [({⟨p_id, h_pp⟩} : multiset (prime_spectrum A)), le_top],
rwa [multiset.map_singleton, multiset.singleton_eq_singleton, multiset.prod_singleton,
subtype.coe_mk] },
by_cases h_prM : M.is_prime,
{ use ({⟨M, h_prM⟩} : multiset (prime_spectrum A)),
rw [multiset.map_singleton, multiset.singleton_eq_singleton, multiset.prod_singleton,
subtype.coe_mk],
exact ⟨le_rfl, h_nzM⟩ },
obtain ⟨x, hx, y, hy, h_xy⟩ := (ideal.not_is_prime_iff.mp h_prM).resolve_left h_topM,
have lt_add : ∀ z ∉ M, M < M + span A {z},
{ intros z hz,
refine lt_of_le_of_ne le_sup_left (λ m_eq, hz _),
rw m_eq,
exact mem_sup_right (mem_span_singleton_self z) },
obtain ⟨Wx, h_Wx_le, h_Wx_ne⟩ := hgt (M + span A {x}) (lt_add _ hx) (ne_bot_of_gt (lt_add _ hx)),
obtain ⟨Wy, h_Wy_le, h_Wx_ne⟩ := hgt (M + span A {y}) (lt_add _ hy) (ne_bot_of_gt (lt_add _ hy)),
use Wx + Wy,
rw [multiset.map_add, multiset.prod_add],
refine ⟨le_trans (submodule.mul_le_mul h_Wx_le h_Wy_le) _, mt ideal.mul_eq_bot.mp _⟩,
{ rw add_mul,
apply sup_le (show M * (M + span A {y}) ≤ M, from ideal.mul_le_right),
rw mul_add,
apply sup_le (show span A {x} * M ≤ M, from ideal.mul_le_left),
rwa [span_mul_span, singleton_mul_singleton, span_singleton_le_iff_mem] },
{ rintro (hx | hy); contradiction },
end
end primes