-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfractional_ideal.lean
1156 lines (953 loc) · 41.6 KB
/
fractional_ideal.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen, Filippo A. E. Nuccio
-/
import ring_theory.localization
import ring_theory.noetherian
import ring_theory.principal_ideal_domain
import tactic.field_simp
/-!
# Fractional ideals
This file defines fractional ideals of an integral domain and proves basic facts about them.
## Main definitions
Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the
natural ring hom from `R` to `P`.
* `is_fractional` defines which `R`-submodules of `P` are fractional ideals
* `fractional_ideal f` is the type of fractional ideals in `P`
* `has_coe (ideal R) (fractional_ideal f)` instance
* `comm_semiring (fractional_ideal f)` instance:
the typical ideal operations generalized to fractional ideals
* `lattice (fractional_ideal f)` instance
* `map` is the pushforward of a fractional ideal along an algebra morphism
Let `K` be the localization of `R` at `R \ {0}` and `g` the natural ring hom from `R` to `K`.
* `has_div (fractional_ideal g)` instance:
the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined)
## Main statements
* `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone
* `prod_one_self_div_eq` states that `1 / I` is the inverse of `I` if one exists
* `is_noetherian` states that very fractional ideal of a noetherian integral domain is noetherian
## Implementation notes
Fractional ideals are considered equal when they contain the same elements,
independent of the denominator `a : R` such that `a I ⊆ R`.
Thus, we define `fractional_ideal` to be the subtype of the predicate `is_fractional`,
instead of having `fractional_ideal` be a structure of which `a` is a field.
Most definitions in this file specialize operations from submodules to fractional ideals,
proving that the result of this operation is fractional if the input is fractional.
Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`,
in order to re-use their respective proof terms.
We can still use `simp` to show `I.1 + J.1 = (I + J).1` and `⊥.1 = 0.1`.
In `ring_theory.localization`, we define a copy of the localization map `f`'s codomain `P`
(`f.codomain`) so that the `R`-algebra instance on `P` can 'know' the map needed to induce
the `R`-algebra structure.
We don't assume that the localization is a field until we need it to define ideal quotients.
When this assumption is needed, we replace `S` with `non_zero_divisors R`, making the localization
a field.
## References
* https://en.wikipedia.org/wiki/Fractional_ideal
## Tags
fractional ideal, fractional ideals, invertible ideal
-/
open localization_map
namespace ring
section defs
variables {R : Type*} [comm_ring R] {S : submonoid R} {P : Type*} [comm_ring P]
(f : localization_map S P)
/-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/
def is_fractional (I : submodule R f.codomain) :=
∃ a ∈ S, ∀ b ∈ I, f.is_integer (f.to_map a * b)
/-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`.
More precisely, let `P` be a localization of `R` at some submonoid `S`,
then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`,
such that there is a nonzero `a : R` with `a I ⊆ R`.
-/
def fractional_ideal :=
{I : submodule R f.codomain // is_fractional f I}
end defs
namespace fractional_ideal
open set
open submodule
variables {R : Type*} [comm_ring R] {S : submonoid R} {P : Type*} [comm_ring P]
{f : localization_map S P}
instance : has_coe (fractional_ideal f) (submodule R f.codomain) := ⟨λ I, I.val⟩
@[simp] lemma val_eq_coe (I : fractional_ideal f) : I.val = I := rfl
@[simp, norm_cast] lemma coe_mk (I : submodule R f.codomain) (hI : is_fractional f I) :
(subtype.mk I hI : submodule R f.codomain) = I := rfl
instance : has_mem P (fractional_ideal f) := ⟨λ x I, x ∈ (I : submodule R f.codomain)⟩
lemma mem_coe {x : f.codomain} {I : fractional_ideal f} :
x ∈ (I : submodule R f.codomain) ↔ x ∈ I :=
iff.rfl
/-- Fractional ideals are equal if their submodules are equal.
Combined with `submodule.ext` this gives that fractional ideals are equal if
they have the same elements.
-/
@[ext]
lemma ext {I J : fractional_ideal f} : (I : submodule R f.codomain) = J → I = J :=
subtype.ext_iff_val.mpr
lemma ext_iff {I J : fractional_ideal f} : (∀ x, (x ∈ I ↔ x ∈ J)) ↔ I = J :=
⟨ λ h, ext (submodule.ext h), λ h x, h ▸ iff.rfl ⟩
lemma fractional_of_subset_one (I : submodule R f.codomain)
(h : I ≤ (submodule.span R {1})) :
is_fractional f I :=
begin
use [1, S.one_mem],
intros b hb,
rw [f.to_map.map_one, one_mul],
rw ←submodule.one_eq_span at h,
obtain ⟨b', b'_mem, b'_eq_b⟩ := h hb,
rw (show b = f.to_map b', from b'_eq_b.symm),
exact set.mem_range_self b',
end
lemma is_fractional_of_le {I : submodule R f.codomain} {J : fractional_ideal f}
(hIJ : I ≤ J) : is_fractional f I :=
begin
obtain ⟨a, a_mem, ha⟩ := J.2,
use [a, a_mem],
intros b b_mem,
exact ha b (hIJ b_mem)
end
instance coe_to_fractional_ideal : has_coe (ideal R) (fractional_ideal f) :=
⟨ λ I, ⟨f.coe_submodule I, fractional_of_subset_one _ $ λ x ⟨y, hy, h⟩,
submodule.mem_span_singleton.2 ⟨y, by rw ←h; exact mul_one _⟩⟩ ⟩
@[simp, norm_cast] lemma coe_coe_ideal (I : ideal R) :
((I : fractional_ideal f) : submodule R f.codomain) = f.coe_submodule I := rfl
@[simp] lemma mem_coe_ideal {x : f.codomain} {I : ideal R} :
x ∈ (I : fractional_ideal f) ↔ ∃ (x' ∈ I), f.to_map x' = x :=
⟨ λ ⟨x', hx', hx⟩, ⟨x', hx', hx⟩,
λ ⟨x', hx', hx⟩, ⟨x', hx', hx⟩ ⟩
instance : has_zero (fractional_ideal f) := ⟨(0 : ideal R)⟩
@[simp] lemma mem_zero_iff {x : P} : x ∈ (0 : fractional_ideal f) ↔ x = 0 :=
⟨ (λ ⟨x', x'_mem_zero, x'_eq_x⟩,
have x'_eq_zero : x' = 0 := x'_mem_zero,
by simp [x'_eq_x.symm, x'_eq_zero]),
(λ hx, ⟨0, rfl, by simp [hx]⟩) ⟩
@[simp, norm_cast] lemma coe_zero : ↑(0 : fractional_ideal f) = (⊥ : submodule R f.codomain) :=
submodule.ext $ λ _, mem_zero_iff
@[simp, norm_cast] lemma coe_to_fractional_ideal_bot : ((⊥ : ideal R) : fractional_ideal f) = 0 :=
rfl
@[simp] lemma exists_mem_to_map_eq {x : R} {I : ideal R} (h : S ≤ non_zero_divisors R) :
(∃ x', x' ∈ I ∧ f.to_map x' = f.to_map x) ↔ x ∈ I :=
⟨λ ⟨x', hx', eq⟩, f.injective h eq ▸ hx', λ h, ⟨x, h, rfl⟩⟩
lemma coe_to_fractional_ideal_injective (h : S ≤ non_zero_divisors R) :
function.injective (coe : ideal R → fractional_ideal f) :=
λ I J heq, have
∀ (x : R), f.to_map x ∈ (I : fractional_ideal f) ↔ f.to_map x ∈ (J : fractional_ideal f) :=
λ x, heq ▸ iff.rfl,
ideal.ext (by { simpa only [mem_coe_ideal, exists_prop, exists_mem_to_map_eq h] using this })
lemma coe_to_fractional_ideal_eq_zero {I : ideal R} (hS : S ≤ non_zero_divisors R) :
(I : fractional_ideal f) = 0 ↔ I = (⊥ : ideal R) :=
⟨λ h, coe_to_fractional_ideal_injective hS h,
λ h, by rw [h, coe_to_fractional_ideal_bot]⟩
lemma coe_to_fractional_ideal_ne_zero {I : ideal R} (hS : S ≤ non_zero_divisors R) :
(I : fractional_ideal f) ≠ 0 ↔ I ≠ (⊥ : ideal R) :=
not_iff_not.mpr (coe_to_fractional_ideal_eq_zero hS)
lemma coe_to_submodule_eq_bot {I : fractional_ideal f} :
(I : submodule R f.codomain) = ⊥ ↔ I = 0 :=
⟨λ h, ext (by simp [h]),
λ h, by simp [h] ⟩
lemma coe_to_submodule_ne_bot {I : fractional_ideal f} :
↑I ≠ (⊥ : submodule R f.codomain) ↔ I ≠ 0 :=
not_iff_not.mpr coe_to_submodule_eq_bot
instance : inhabited (fractional_ideal f) := ⟨0⟩
instance : has_one (fractional_ideal f) :=
⟨(1 : ideal R)⟩
lemma mem_one_iff {x : P} : x ∈ (1 : fractional_ideal f) ↔ ∃ x' : R, f.to_map x' = x :=
iff.intro (λ ⟨x', _, h⟩, ⟨x', h⟩) (λ ⟨x', h⟩, ⟨x', ⟨x', set.mem_univ _, rfl⟩, h⟩)
lemma coe_mem_one (x : R) : f.to_map x ∈ (1 : fractional_ideal f) :=
mem_one_iff.mpr ⟨x, rfl⟩
lemma one_mem_one : (1 : P) ∈ (1 : fractional_ideal f) :=
mem_one_iff.mpr ⟨1, f.to_map.map_one⟩
/-- `(1 : fractional_ideal f)` is defined as the R-submodule `f(R) ≤ K`.
However, this is not definitionally equal to `1 : submodule R K`,
which is proved in the actual `simp` lemma `coe_one`. -/
lemma coe_one_eq_coe_submodule_one :
↑(1 : fractional_ideal f) = f.coe_submodule (1 : ideal R) :=
rfl
@[simp, norm_cast] lemma coe_one :
(↑(1 : fractional_ideal f) : submodule R f.codomain) = 1 :=
begin
simp only [coe_one_eq_coe_submodule_one, ideal.one_eq_top],
convert (submodule.one_eq_map_top).symm,
end
section lattice
/-!
### `lattice` section
Defines the order on fractional ideals as inclusion of their underlying sets,
and ports the lattice structure on submodules to fractional ideals.
-/
instance : partial_order (fractional_ideal f) :=
{ le := λ I J, I.1 ≤ J.1,
le_refl := λ I, le_refl I.1,
le_antisymm := λ ⟨I, hI⟩ ⟨J, hJ⟩ hIJ hJI, by { congr, exact le_antisymm hIJ hJI },
le_trans := λ _ _ _ hIJ hJK, le_trans hIJ hJK }
lemma le_iff_mem {I J : fractional_ideal f} : I ≤ J ↔ (∀ x ∈ I, x ∈ J) :=
iff.rfl
@[simp] lemma coe_le_coe {I J : fractional_ideal f} :
(I : submodule R f.codomain) ≤ (J : submodule R f.codomain) ↔ I ≤ J :=
iff.rfl
lemma zero_le (I : fractional_ideal f) : 0 ≤ I :=
begin
intros x hx,
convert submodule.zero_mem _,
simpa using hx
end
instance order_bot : order_bot (fractional_ideal f) :=
{ bot := 0,
bot_le := zero_le,
..fractional_ideal.partial_order }
@[simp] lemma bot_eq_zero : (⊥ : fractional_ideal f) = 0 :=
rfl
@[simp] lemma le_zero_iff {I : fractional_ideal f} : I ≤ 0 ↔ I = 0 :=
le_bot_iff
lemma eq_zero_iff {I : fractional_ideal f} : I = 0 ↔ (∀ x ∈ I, x = (0 : P)) :=
⟨ (λ h x hx, by simpa [h, mem_zero_iff] using hx),
(λ h, le_bot_iff.mp (λ x hx, mem_zero_iff.mpr (h x hx))) ⟩
lemma fractional_sup (I J : fractional_ideal f) : is_fractional f (I.1 ⊔ J.1) :=
begin
rcases I.2 with ⟨aI, haI, hI⟩,
rcases J.2 with ⟨aJ, haJ, hJ⟩,
use aI * aJ,
use S.mul_mem haI haJ,
intros b hb,
rcases mem_sup.mp hb with
⟨bI, hbI, bJ, hbJ, hbIJ⟩,
rw [←hbIJ, mul_add],
apply is_integer_add,
{ rw [mul_comm aI, f.to_map.map_mul, mul_assoc],
apply is_integer_smul (hI bI hbI), },
{ rw [f.to_map.map_mul, mul_assoc],
apply is_integer_smul (hJ bJ hbJ) }
end
lemma fractional_inf (I J : fractional_ideal f) : is_fractional f (I.1 ⊓ J.1) :=
begin
rcases I.2 with ⟨aI, haI, hI⟩,
use aI,
use haI,
intros b hb,
rcases mem_inf.mp hb with ⟨hbI, hbJ⟩,
exact (hI b hbI)
end
instance lattice : lattice (fractional_ideal f) :=
{ inf := λ I J, ⟨I.1 ⊓ J.1, fractional_inf I J⟩,
sup := λ I J, ⟨I.1 ⊔ J.1, fractional_sup I J⟩,
inf_le_left := λ I J, show I.1 ⊓ J.1 ≤ I.1, from inf_le_left,
inf_le_right := λ I J, show I.1 ⊓ J.1 ≤ J.1, from inf_le_right,
le_inf := λ I J K hIJ hIK, show I.1 ≤ (J.1 ⊓ K.1), from le_inf hIJ hIK,
le_sup_left := λ I J, show I.1 ≤ I.1 ⊔ J.1, from le_sup_left,
le_sup_right := λ I J, show J.1 ≤ I.1 ⊔ J.1, from le_sup_right,
sup_le := λ I J K hIK hJK, show (I.1 ⊔ J.1) ≤ K.1, from sup_le hIK hJK,
..fractional_ideal.partial_order }
instance : semilattice_sup_bot (fractional_ideal f) :=
{ ..fractional_ideal.order_bot, ..fractional_ideal.lattice }
@[simp]
lemma coe_ideal_le {I : ideal R} {J : fractional_ideal f} :
↑I ≤ J ↔ ∀ x ∈ I, f.to_map x ∈ J :=
⟨λ h x hx, h ⟨x, hx, rfl⟩,
λ h x hx, let ⟨x', hx', eq_x⟩ := fractional_ideal.mem_coe_ideal.mp hx in eq_x ▸ h x' hx'⟩
end lattice
section semiring
instance : has_add (fractional_ideal f) := ⟨(⊔)⟩
@[simp]
lemma sup_eq_add (I J : fractional_ideal f) : I ⊔ J = I + J := rfl
@[simp, norm_cast]
lemma coe_add (I J : fractional_ideal f) : (↑(I + J) : submodule R f.codomain) = I + J := rfl
lemma fractional_mul (I J : fractional_ideal f) : is_fractional f (I.1 * J.1) :=
begin
rcases I with ⟨I, aI, haI, hI⟩,
rcases J with ⟨I, aJ, haJ, hJ⟩,
use aI * aJ,
use S.mul_mem haI haJ,
intros b hb,
apply submodule.mul_induction_on hb,
{ intros m hm n hn,
obtain ⟨n', hn'⟩ := hJ n hn,
rw [f.to_map.map_mul, mul_comm m, ←mul_assoc, mul_assoc _ _ n],
erw ←hn', rw mul_assoc,
apply hI,
exact submodule.smul_mem _ _ hm },
{ rw [mul_zero],
exact ⟨0, f.to_map.map_zero⟩ },
{ intros x y hx hy,
rw [mul_add],
apply is_integer_add hx hy },
{ intros r x hx,
show f.is_integer (_ * (f.to_map r * x)),
rw [←mul_assoc, ←f.to_map.map_mul, mul_comm _ r, f.to_map.map_mul, mul_assoc],
apply is_integer_smul hx },
end
/-- `fractional_ideal.mul` is the product of two fractional ideals,
used to define the `has_mul` instance.
This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`.
Elaborated terms involving `fractional_ideal` tend to grow quite large,
so by making definitions irreducible, we hope to avoid deep unfolds.
-/
@[irreducible]
def mul (I J : fractional_ideal f) : fractional_ideal f :=
⟨I.1 * J.1, fractional_mul I J⟩
local attribute [semireducible] mul
instance : has_mul (fractional_ideal f) := ⟨λ I J, mul I J⟩
@[simp] lemma mul_eq_mul (I J : fractional_ideal f) : mul I J = I * J := rfl
@[simp, norm_cast]
lemma coe_mul (I J : fractional_ideal f) : (↑(I * J) : submodule R f.codomain) = I * J := rfl
lemma mul_left_mono (I : fractional_ideal f) : monotone ((*) I) :=
λ J J' h, mul_le.mpr (λ x hx y hy, mul_mem_mul hx (h hy))
lemma mul_right_mono (I : fractional_ideal f) : monotone (λ J, J * I) :=
λ J J' h, mul_le.mpr (λ x hx y hy, mul_mem_mul (h hx) hy)
lemma mul_mem_mul {I J : fractional_ideal f} {i j : f.codomain} (hi : i ∈ I) (hj : j ∈ J) :
i * j ∈ I * J := submodule.mul_mem_mul hi hj
lemma mul_le {I J K : fractional_ideal f} :
I * J ≤ K ↔ (∀ (i ∈ I) (j ∈ J), i * j ∈ K) :=
submodule.mul_le
@[elab_as_eliminator] protected theorem mul_induction_on
{I J : fractional_ideal f}
{C : f.codomain → Prop} {r : f.codomain} (hr : r ∈ I * J)
(hm : ∀ (i ∈ I) (j ∈ J), C (i * j))
(h0 : C 0) (ha : ∀ x y, C x → C y → C (x + y))
(hs : ∀ (r : R) x, C x → C (r • x)) : C r :=
submodule.mul_induction_on hr hm h0 ha hs
@[simp, norm_cast]
lemma coe_ideal_mul (I J : ideal R) :
(↑(I * J) : fractional_ideal f) = I * J :=
begin
apply le_antisymm,
{ rw fractional_ideal.coe_ideal_le,
intros x hx,
refine submodule.mul_induction_on hx (λ x hx y hy, _) _ (λ x y hx hy, _) (λ r x hx, _),
{ rw f.to_map.map_mul,
apply fractional_ideal.mul_mem_mul; rw fractional_ideal.mem_coe_ideal,
{ exact ⟨x, hx, rfl⟩ },
{ exact ⟨y, hy, rfl⟩ } },
{ rw f.to_map.map_zero,
exact submodule.zero_mem _ },
{ rw f.to_map.map_add,
exact submodule.add_mem _ hx hy },
{ rw [smul_eq_mul, f.to_map.map_mul],
exact submodule.smul_mem _ _ hx } },
{ rw fractional_ideal.mul_le,
intros x hx y hy,
obtain ⟨x', hx', rfl⟩ := fractional_ideal.mem_coe_ideal.mp hx,
obtain ⟨y', hy', rfl⟩ := fractional_ideal.mem_coe_ideal.mp hy,
rw fractional_ideal.mem_coe_ideal,
exact ⟨x' * y', ideal.mul_mem_mul hx' hy', f.to_map.map_mul _ _⟩ },
end
instance comm_semiring : comm_semiring (fractional_ideal f) :=
{ add_assoc := λ I J K, sup_assoc,
add_comm := λ I J, sup_comm,
add_zero := λ I, sup_bot_eq,
zero_add := λ I, bot_sup_eq,
mul_assoc := λ I J K, ext (submodule.mul_assoc _ _ _),
mul_comm := λ I J, ext (submodule.mul_comm _ _),
mul_one := λ I, begin
ext,
split; intro h,
{ apply mul_le.mpr _ h,
rintros x hx y ⟨y', y'_mem_R, y'_eq_y⟩,
rw [←y'_eq_y, mul_comm],
exact submodule.smul_mem _ _ hx },
{ have : x * 1 ∈ (I * 1) := mul_mem_mul h one_mem_one,
rwa [mul_one] at this }
end,
one_mul := λ I, begin
ext,
split; intro h,
{ apply mul_le.mpr _ h,
rintros x ⟨x', x'_mem_R, x'_eq_x⟩ y hy,
rw ←x'_eq_x,
exact submodule.smul_mem _ _ hy },
{ have : 1 * x ∈ (1 * I) := mul_mem_mul one_mem_one h,
rwa [one_mul] at this }
end,
mul_zero := λ I, eq_zero_iff.mpr (λ x hx, submodule.mul_induction_on hx
(λ x hx y hy, by simp [mem_zero_iff.mp hy])
rfl
(λ x y hx hy, by simp [hx, hy])
(λ r x hx, by simp [hx])),
zero_mul := λ I, eq_zero_iff.mpr (λ x hx, submodule.mul_induction_on hx
(λ x hx y hy, by simp [mem_zero_iff.mp hx])
rfl
(λ x y hx hy, by simp [hx, hy])
(λ r x hx, by simp [hx])),
left_distrib := λ I J K, ext (mul_add _ _ _),
right_distrib := λ I J K, ext (add_mul _ _ _),
..fractional_ideal.has_zero,
..fractional_ideal.has_add,
..fractional_ideal.has_one,
..fractional_ideal.has_mul }
section order
lemma add_le_add_left {I J : fractional_ideal f} (hIJ : I ≤ J) (J' : fractional_ideal f) :
J' + I ≤ J' + J :=
sup_le_sup_left hIJ J'
lemma mul_le_mul_left {I J : fractional_ideal f} (hIJ : I ≤ J) (J' : fractional_ideal f) :
J' * I ≤ J' * J :=
mul_le.mpr (λ k hk j hj, mul_mem_mul hk (hIJ hj))
lemma le_self_mul_self {I : fractional_ideal f} (hI: 1 ≤ I) : I ≤ I * I :=
begin
convert mul_left_mono I hI,
exact (mul_one I).symm
end
lemma mul_self_le_self {I : fractional_ideal f} (hI: I ≤ 1) : I * I ≤ I :=
begin
convert mul_left_mono I hI,
exact (mul_one I).symm
end
lemma coe_ideal_le_one {I : ideal R} : (I : fractional_ideal f) ≤ 1 :=
λ x hx, let ⟨y, _, hy⟩ := fractional_ideal.mem_coe_ideal.mp hx
in fractional_ideal.mem_one_iff.mpr ⟨y, hy⟩
lemma le_one_iff_exists_coe_ideal {J : fractional_ideal f} :
J ≤ (1 : fractional_ideal f) ↔ ∃ (I : ideal R), ↑I = J :=
begin
split,
{ intro hJ,
refine ⟨⟨{x : R | f.to_map x ∈ J}, _, _, _⟩, _⟩,
{ rw [mem_set_of_eq, ring_hom.map_zero],
exact J.val.zero_mem },
{ intros a b ha hb,
rw [mem_set_of_eq, ring_hom.map_add],
exact J.val.add_mem ha hb },
{ intros c x hx,
rw [smul_eq_mul, mem_set_of_eq, ring_hom.map_mul],
exact J.val.smul_mem c hx },
{ ext x,
split,
{ rintros ⟨y, hy, eq_y⟩,
rwa ← eq_y },
{ intro hx,
obtain ⟨y, eq_x⟩ := fractional_ideal.mem_one_iff.mp (hJ hx),
rw ← eq_x at *,
exact ⟨y, hx, rfl⟩ } } },
{ rintro ⟨I, hI⟩,
rw ← hI,
apply coe_ideal_le_one },
end
end order
variables {P' : Type*} [comm_ring P'] {f' : localization_map S P'}
variables {P'' : Type*} [comm_ring P''] {f'' : localization_map S P''}
lemma fractional_map (g : f.codomain →ₐ[R] f'.codomain) (I : fractional_ideal f) :
is_fractional f' (submodule.map g.to_linear_map I.1) :=
begin
rcases I with ⟨I, a, a_nonzero, hI⟩,
use [a, a_nonzero],
intros b hb,
obtain ⟨b', b'_mem, hb'⟩ := submodule.mem_map.mp hb,
obtain ⟨x, hx⟩ := hI b' b'_mem,
use x,
erw [←g.commutes, hx, g.map_smul, hb'],
refl
end
/-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/
def map (g : f.codomain →ₐ[R] f'.codomain) :
fractional_ideal f → fractional_ideal f' :=
λ I, ⟨submodule.map g.to_linear_map I.1, fractional_map g I⟩
@[simp, norm_cast] lemma coe_map (g : f.codomain →ₐ[R] f'.codomain) (I : fractional_ideal f) :
↑(map g I) = submodule.map g.to_linear_map I := rfl
@[simp] lemma mem_map {I : fractional_ideal f} {g : f.codomain →ₐ[R] f'.codomain}
{y : f'.codomain} : y ∈ I.map g ↔ ∃ x, x ∈ I ∧ g x = y :=
submodule.mem_map
variables (I J : fractional_ideal f) (g : f.codomain →ₐ[R] f'.codomain)
@[simp] lemma map_id : I.map (alg_hom.id _ _) = I :=
ext (submodule.map_id I.1)
@[simp] lemma map_comp (g' : f'.codomain →ₐ[R] f''.codomain) :
I.map (g'.comp g) = (I.map g).map g' :=
ext (submodule.map_comp g.to_linear_map g'.to_linear_map I.1)
@[simp, norm_cast] lemma map_coe_ideal (I : ideal R) :
(I : fractional_ideal f).map g = I :=
begin
ext x,
simp only [coe_coe_ideal, mem_coe_submodule],
split,
{ rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩,
exact ⟨y, hy, (g.commutes y).symm⟩ },
{ rintro ⟨y, hy, rfl⟩,
exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ },
end
@[simp] lemma map_one :
(1 : fractional_ideal f).map g = 1 :=
map_coe_ideal g 1
@[simp] lemma map_zero :
(0 : fractional_ideal f).map g = 0 :=
map_coe_ideal g 0
@[simp] lemma map_add : (I + J).map g = I.map g + J.map g :=
ext (submodule.map_sup _ _ _)
@[simp] lemma map_mul : (I * J).map g = I.map g * J.map g :=
ext (submodule.map_mul _ _ _)
@[simp] lemma map_map_symm (g : f.codomain ≃ₐ[R] f'.codomain) :
(I.map (g : f.codomain →ₐ[R] f'.codomain)).map (g.symm : f'.codomain →ₐ[R] f.codomain) = I :=
by rw [←map_comp, g.symm_comp, map_id]
@[simp] lemma map_symm_map (I : fractional_ideal f') (g : f.codomain ≃ₐ[R] f'.codomain) :
(I.map (g.symm : f'.codomain →ₐ[R] f.codomain)).map (g : f.codomain →ₐ[R] f'.codomain) = I :=
by rw [←map_comp, g.comp_symm, map_id]
/-- If `g` is an equivalence, `map g` is an isomorphism -/
def map_equiv (g : f.codomain ≃ₐ[R] f'.codomain) :
fractional_ideal f ≃+* fractional_ideal f' :=
{ to_fun := map g,
inv_fun := map g.symm,
map_add' := λ I J, map_add I J _,
map_mul' := λ I J, map_mul I J _,
left_inv := λ I, by { rw [←map_comp, alg_equiv.symm_comp, map_id] },
right_inv := λ I, by { rw [←map_comp, alg_equiv.comp_symm, map_id] } }
@[simp] lemma coe_fun_map_equiv (g : f.codomain ≃ₐ[R] f'.codomain) :
⇑(map_equiv g) = map g :=
rfl
@[simp] lemma map_equiv_apply (g : f.codomain ≃ₐ[R] f'.codomain) (I : fractional_ideal f) :
map_equiv g I = map ↑g I := rfl
@[simp] lemma map_equiv_symm (g : f.codomain ≃ₐ[R] f'.codomain) :
(map_equiv g).symm = map_equiv g.symm := rfl
@[simp] lemma map_equiv_refl :
map_equiv alg_equiv.refl = ring_equiv.refl (fractional_ideal f) :=
ring_equiv.ext (λ x, by simp)
lemma is_fractional_span_iff {s : set f.codomain} :
is_fractional f (span R s) ↔ ∃ a ∈ S, ∀ (b : P), b ∈ s → f.is_integer (f.to_map a * b) :=
⟨ λ ⟨a, a_mem, h⟩, ⟨a, a_mem, λ b hb, h b (subset_span hb)⟩,
λ ⟨a, a_mem, h⟩, ⟨a, a_mem, λ b hb, span_induction hb
h
(by { rw mul_zero, exact f.is_integer_zero })
(λ x y hx hy, by { rw mul_add, exact is_integer_add hx hy })
(λ s x hx, by { rw algebra.mul_smul_comm, exact is_integer_smul hx }) ⟩ ⟩
lemma is_fractional_of_fg {I : submodule R f.codomain} (hI : I.fg) :
is_fractional f I :=
begin
rcases hI with ⟨I, rfl⟩,
rcases localization_map.exist_integer_multiples_of_finset f I with ⟨⟨s, hs1⟩, hs⟩,
rw is_fractional_span_iff,
exact ⟨s, hs1, hs⟩,
end
/-- `canonical_equiv f f'` is the canonical equivalence between the fractional
ideals in `f.codomain` and in `f'.codomain` -/
@[irreducible]
noncomputable def canonical_equiv (f : localization_map S P) (f' : localization_map S P') :
fractional_ideal f ≃+* fractional_ideal f' :=
map_equiv
{ commutes' := λ r, ring_equiv_of_ring_equiv_eq _ _ _,
..ring_equiv_of_ring_equiv f f' (ring_equiv.refl R)
(by rw [ring_equiv.to_monoid_hom_refl, submonoid.map_id]) }
@[simp] lemma mem_canonical_equiv_apply {I : fractional_ideal f} {x : f'.codomain} :
x ∈ canonical_equiv f f' I ↔
∃ y ∈ I, @localization_map.map _ _ _ _ _ _ _ f (ring_hom.id _) _ (λ ⟨y, hy⟩, hy) _ _ f' y = x :=
begin
rw [canonical_equiv, map_equiv_apply, mem_map],
exact ⟨λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩, λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩⟩
end
@[simp] lemma canonical_equiv_symm (f : localization_map S P) (f' : localization_map S P') :
(canonical_equiv f f').symm = canonical_equiv f' f :=
ring_equiv.ext $ λ I, fractional_ideal.ext_iff.mp $ λ x,
by { erw [mem_canonical_equiv_apply, canonical_equiv, map_equiv_symm, map_equiv, mem_map],
exact ⟨λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩, λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩⟩ }
@[simp] lemma canonical_equiv_flip (f : localization_map S P) (f' : localization_map S P') (I) :
canonical_equiv f f' (canonical_equiv f' f I) = I :=
by rw [←canonical_equiv_symm, ring_equiv.symm_apply_apply]
end semiring
section fraction_map
/-!
### `fraction_map` section
This section concerns fractional ideals in the field of fractions,
i.e. the type `fractional_ideal g` when `g` is a `fraction_map R K`.
-/
variables {K K' : Type*} [field K] [field K'] {g : fraction_map R K} {g' : fraction_map R K'}
variables {I J : fractional_ideal g} (h : g.codomain →ₐ[R] g'.codomain)
/-- Nonzero fractional ideals contain a nonzero integer. -/
lemma exists_ne_zero_mem_is_integer [nontrivial R] (hI : I ≠ 0) :
∃ x ≠ (0 : R), g.to_map x ∈ I :=
begin
obtain ⟨y, y_mem, y_not_mem⟩ := submodule.exists_of_lt (bot_lt_iff_ne_bot.mpr hI),
have y_ne_zero : y ≠ 0 := by simpa using y_not_mem,
obtain ⟨z, ⟨x, hx⟩⟩ := g.exists_integer_multiple y,
refine ⟨x, _, _⟩,
{ rw [ne.def, ← g.to_map_eq_zero_iff, hx],
exact mul_ne_zero (g.to_map_ne_zero_of_mem_non_zero_divisors _) y_ne_zero },
{ rw hx,
exact smul_mem _ _ y_mem }
end
lemma map_ne_zero [nontrivial R] (hI : I ≠ 0) : I.map h ≠ 0 :=
begin
obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_is_integer hI,
contrapose! x_ne_zero with map_eq_zero,
refine g'.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)),
exact ⟨g.to_map x, hx, h.commutes x⟩,
end
@[simp] lemma map_eq_zero_iff [nontrivial R] : I.map h = 0 ↔ I = 0 :=
⟨imp_of_not_imp_not _ _ (map_ne_zero _),
λ hI, hI.symm ▸ map_zero h⟩
@[simp, norm_cast]
lemma coe_ideal_le_coe_ideal {I J : ideal R} :
(I : fractional_ideal g) ≤ (J : fractional_ideal g) ↔ I ≤ J :=
begin
split,
{ intros h x hI,
rw le_iff_mem at h,
specialize h (g.to_map x),
simp only [mem_coe_ideal, exists_prop, exists_mem_to_map_eq] at h,
exact h hI },
{ rintros h x hx,
simp only [val_eq_coe, coe_coe_ideal, localization_map.mem_coe_submodule] at hx ⊢,
obtain ⟨y, hy, y_eq⟩ := hx,
exact ⟨y, h hy, y_eq⟩ },
end
end fraction_map
section quotient
/-!
### `quotient` section
This section defines the ideal quotient of fractional ideals.
In this section we need that each non-zero `y : R` has an inverse in
the localization, i.e. that the localization is a field. We satisfy this
assumption by taking `S = non_zero_divisors R`, `R`'s localization at which
is a field because `R` is a domain.
-/
open_locale classical
variables {R₁ : Type*} [integral_domain R₁] {K : Type*} [field K] {g : fraction_map R₁ K}
instance : nontrivial (fractional_ideal g) :=
⟨⟨0, 1, λ h,
have this : (1 : K) ∈ (0 : fractional_ideal g) :=
by rw ←g.to_map.map_one; convert coe_mem_one _,
one_ne_zero (mem_zero_iff.mp this) ⟩⟩
lemma fractional_div_of_nonzero {I J : fractional_ideal g} (h : J ≠ 0) :
is_fractional g (I.1 / J.1) :=
begin
rcases I with ⟨I, aI, haI, hI⟩,
rcases J with ⟨J, aJ, haJ, hJ⟩,
obtain ⟨y, mem_J, not_mem_zero⟩ := exists_of_lt (bot_lt_iff_ne_bot.mpr h),
obtain ⟨y', hy'⟩ := hJ y mem_J,
use (aI * y'),
split,
{ apply (non_zero_divisors R₁).mul_mem haI (mem_non_zero_divisors_iff_ne_zero.mpr _),
intro y'_eq_zero,
have : g.to_map aJ * y = 0 := by rw [←hy', y'_eq_zero, g.to_map.map_zero],
obtain aJ_zero | y_zero := mul_eq_zero.mp this,
{ have : aJ = 0 := g.to_map.injective_iff.1 g.injective _ aJ_zero,
have : aJ ≠ 0 := mem_non_zero_divisors_iff_ne_zero.mp haJ,
contradiction },
{ exact not_mem_zero (mem_zero_iff.mpr y_zero) } },
intros b hb,
rw [g.to_map.map_mul, mul_assoc, mul_comm _ b, hy'],
exact hI _ (hb _ (submodule.smul_mem _ aJ mem_J)),
end
noncomputable instance fractional_ideal_has_div :
has_div (fractional_ideal g) :=
⟨ λ I J, if h : J = 0 then 0 else ⟨I.1 / J.1, fractional_div_of_nonzero h⟩ ⟩
variables {I J : fractional_ideal g} [ J ≠ 0 ]
@[simp] lemma div_zero {I : fractional_ideal g} :
I / 0 = 0 :=
dif_pos rfl
lemma div_nonzero {I J : fractional_ideal g} (h : J ≠ 0) :
(I / J) = ⟨I.1 / J.1, fractional_div_of_nonzero h⟩ :=
dif_neg h
@[simp] lemma coe_div {I J : fractional_ideal g} (hJ : J ≠ 0) :
(↑(I / J) : submodule R₁ g.codomain) = ↑I / (↑J : submodule R₁ g.codomain) :=
begin
unfold has_div.div,
simp only [dif_neg hJ, coe_mk, val_eq_coe],
end
lemma mem_div_iff_of_nonzero {I J : fractional_ideal g} (h : J ≠ 0) {x} :
x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I :=
by { rw div_nonzero h, exact submodule.mem_div_iff_forall_mul_mem }
lemma mul_one_div_le_one {I : fractional_ideal g} : I * (1 / I) ≤ 1 :=
begin
by_cases hI : I = 0,
{ rw [hI, div_zero, mul_zero],
exact zero_le 1 },
{ rw [← coe_le_coe, coe_mul, coe_div hI, coe_one],
apply submodule.mul_one_div_le_one },
end
lemma le_self_mul_one_div {I : fractional_ideal g} (hI : I ≤ (1 : fractional_ideal g)) :
I ≤ I * (1 / I) :=
begin
by_cases hI_nz : I = 0,
{ rw [hI_nz, div_zero, mul_zero], exact zero_le 0 },
{ rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one],
rw [← coe_le_coe, coe_one] at hI,
exact submodule.le_self_mul_one_div hI },
end
lemma le_div_iff_of_nonzero {I J J' : fractional_ideal g} (hJ' : J' ≠ 0) :
I ≤ J / J' ↔ ∀ (x ∈ I) (y ∈ J'), x * y ∈ J :=
⟨ λ h x hx, (mem_div_iff_of_nonzero hJ').mp (h hx),
λ h x hx, (mem_div_iff_of_nonzero hJ').mpr (h x hx) ⟩
lemma le_div_iff_mul_le {I J J' : fractional_ideal g} (hJ' : J' ≠ 0) : I ≤ J / J' ↔ I * J' ≤ J :=
begin
rw div_nonzero hJ',
convert submodule.le_div_iff_mul_le using 1,
rw [val_eq_coe, val_eq_coe, ←coe_mul],
refl,
end
lemma mul_one_div_le_div {I J : fractional_ideal g} : I * (1 / J) ≤ I / J :=
if hJ : J = 0 then by simp [hJ] else (le_div_iff_mul_le hJ).mpr $
calc I * (1 / J) * J
= I * (J * (1 / J)) : by rw [mul_assoc, mul_comm (1 / J)]
... ≤ I * 1 : mul_left_mono _ mul_one_div_le_one
... = I : mul_one _
@[simp] lemma div_one {I : fractional_ideal g} : I / 1 = I :=
begin
rw [div_nonzero (@one_ne_zero (fractional_ideal g) _ _)],
ext,
split; intro h,
{ convert mem_div_iff_forall_mul_mem.mp h 1
(g.to_map.map_one ▸ coe_mem_one 1), simp },
{ apply mem_div_iff_forall_mul_mem.mpr,
rintros y ⟨y', _, y_eq_y'⟩,
rw mul_comm,
convert submodule.smul_mem _ y' h,
rw ←y_eq_y',
refl }
end
lemma ne_zero_of_mul_eq_one (I J : fractional_ideal g) (h : I * J = 1) : I ≠ 0 :=
λ hI, @zero_ne_one (fractional_ideal g) _ _ (by { convert h, simp [hI], })
theorem eq_one_div_of_mul_eq_one (I J : fractional_ideal g) (h : I * J = 1) :
J = 1 / I :=
begin
have hI : I ≠ 0 := ne_zero_of_mul_eq_one I J h,
suffices h' : I * (1 / I) = 1,
{ exact (congr_arg units.inv $
@units.ext _ _ (units.mk_of_mul_eq_one _ _ h) (units.mk_of_mul_eq_one _ _ h') rfl) },
apply le_antisymm,
{ apply mul_le.mpr _,
intros x hx y hy,
rw mul_comm,
exact (mem_div_iff_of_nonzero hI).mp hy x hx },
rw ← h,
apply mul_left_mono I,
apply (le_div_iff_of_nonzero hI).mpr _,
intros y hy x hx,
rw mul_comm,
exact mul_mem_mul hx hy,
end
theorem mul_div_self_cancel_iff {I : fractional_ideal g} :
I * (1 / I) = 1 ↔ ∃ J, I * J = 1 :=
⟨λ h, ⟨(1 / I), h⟩, λ ⟨J, hJ⟩, by rwa [← eq_one_div_of_mul_eq_one I J hJ]⟩
variables {K' : Type*} [field K'] {g' : fraction_map R₁ K'}
@[simp] lemma map_div (I J : fractional_ideal g) (h : g.codomain ≃ₐ[R₁] g'.codomain) :
(I / J).map (h : g.codomain →ₐ[R₁] g'.codomain) = I.map h / J.map h :=
begin
by_cases H : J = 0,
{ rw [H, div_zero, map_zero, div_zero] },
{ ext x,
simp [div_nonzero H, div_nonzero (map_ne_zero _ H), submodule.map_div] }
end
@[simp] lemma map_one_div (I : fractional_ideal g) (h : g.codomain ≃ₐ[R₁] g'.codomain) :
(1 / I).map (h : g.codomain →ₐ[R₁] g'.codomain) = 1 / I.map h :=
by rw [map_div, map_one]
end quotient
section principal_ideal_ring
variables {R₁ : Type*} [integral_domain R₁] {K : Type*} [field K] {g : fraction_map R₁ K}
open_locale classical
open submodule submodule.is_principal
lemma is_fractional_span_singleton (x : f.codomain) : is_fractional f (span R {x}) :=
let ⟨a, ha⟩ := f.exists_integer_multiple x in
is_fractional_span_iff.mpr ⟨ a.1, a.2, λ x hx, (mem_singleton_iff.mp hx).symm ▸ ha⟩
/-- `span_singleton x` is the fractional ideal generated by `x` if `0 ∉ S` -/
@[irreducible]
def span_singleton (x : f.codomain) : fractional_ideal f :=
⟨span R {x}, is_fractional_span_singleton x⟩
local attribute [semireducible] span_singleton
@[simp] lemma coe_span_singleton (x : f.codomain) :
(span_singleton x : submodule R f.codomain) = span R {x} := rfl
@[simp] lemma mem_span_singleton {x y : f.codomain} :
x ∈ span_singleton y ↔ ∃ (z : R), z • y = x :=
submodule.mem_span_singleton
lemma mem_span_singleton_self (x : f.codomain) :
x ∈ span_singleton x :=
mem_span_singleton.mpr ⟨1, one_smul _ _⟩
lemma eq_span_singleton_of_principal (I : fractional_ideal f)
[is_principal (I : submodule R f.codomain)] :
I = span_singleton (generator (I : submodule R f.codomain)) :=
ext (span_singleton_generator I.1).symm
lemma is_principal_iff (I : fractional_ideal f) :
is_principal (I : submodule R f.codomain) ↔ ∃ x, I = span_singleton x :=
⟨λ h, ⟨@generator _ _ _ _ _ I.1 h, @eq_span_singleton_of_principal _ _ _ _ _ _ I h⟩,
λ ⟨x, hx⟩, { principal := ⟨x, trans (congr_arg _ hx) (coe_span_singleton x)⟩ } ⟩
@[simp] lemma span_singleton_zero : span_singleton (0 : f.codomain) = 0 :=
by { ext, simp [submodule.mem_span_singleton, eq_comm] }
lemma span_singleton_eq_zero_iff {y : f.codomain} : span_singleton y = 0 ↔ y = 0 :=
⟨λ h, span_eq_bot.mp (by simpa using congr_arg subtype.val h : span R {y} = ⊥) y (mem_singleton y),
λ h, by simp [h] ⟩
lemma span_singleton_ne_zero_iff {y : f.codomain} : span_singleton y ≠ 0 ↔ y ≠ 0 :=
not_congr span_singleton_eq_zero_iff
@[simp] lemma span_singleton_one : span_singleton (1 : f.codomain) = 1 :=
begin
ext,
refine mem_span_singleton.trans ((exists_congr _).trans mem_one_iff.symm),
intro x',
refine eq.congr (mul_one _) rfl,
end
@[simp]
lemma span_singleton_mul_span_singleton (x y : f.codomain) :
span_singleton x * span_singleton y = span_singleton (x * y) :=
begin
ext,
simp_rw [coe_mul, coe_span_singleton, span_mul_span, singleton.is_mul_hom.map_mul]
end
@[simp]
lemma coe_ideal_span_singleton (x : R) :
(↑(span R {x} : ideal R) : fractional_ideal f) = span_singleton (f.to_map x) :=
begin
ext y,
refine mem_coe_ideal.trans (iff.trans _ mem_span_singleton.symm),
split,
{ rintros ⟨y', hy', rfl⟩,
obtain ⟨x', rfl⟩ := submodule.mem_span_singleton.mp hy',
use x',
rw [smul_eq_mul, f.to_map.map_mul],
refl },
{ rintros ⟨y', rfl⟩,
exact ⟨y' * x, submodule.mem_span_singleton.mpr ⟨y', rfl⟩, f.to_map.map_mul _ _⟩ }
end
@[simp]
lemma canonical_equiv_span_singleton (f : localization_map S P) {P'} [comm_ring P']
(f' : localization_map S P') (x : f.codomain) :
canonical_equiv f f' (span_singleton x) =
span_singleton (f.map (show ∀ (y : S), ring_hom.id _ y.1 ∈ S, from λ y, y.2) f' x) :=
begin
apply ext_iff.mp,
intro y,
split; intro h,
{ apply mem_span_singleton.mpr,
obtain ⟨x', hx', rfl⟩ := mem_canonical_equiv_apply.mp h,
obtain ⟨z, rfl⟩ := mem_span_singleton.mp hx',
use z,
rw localization_map.map_smul,
refl },
{ apply mem_canonical_equiv_apply.mpr,
obtain ⟨z, rfl⟩ := mem_span_singleton.mp h,
use f.to_map z * x,
use mem_span_singleton.mpr ⟨z, rfl⟩,
rw [ring_hom.map_mul, localization_map.map_eq],
refl }
end
lemma mem_singleton_mul {x y : f.codomain} {I : fractional_ideal f} :
y ∈ span_singleton x * I ↔ ∃ y' ∈ I, y = x * y' :=
begin