- Video Super Resolution
- Frame Interpolation
- Video Enhancement & Restoration
- Video Stabilization
- Video Debluring
- Video Deraining
- Video Dehazing
- Video Matting
- Video Inpainting
- Video Synthesis
- Video Editing
- Misc
-
Learning Spatiotemporal Frequency-Transformer for Compressed Video Super-Resolution
Zhongwei Qiu, [Huan Yang(https://www.microsoft.com/en-us/research/people/huayan/publications/), Jianlong Fu, Dongmei Fu
[ECCV 2022] [Pytorch-Code]
[FTVSR] -
Towards Interpretable Video Super-Resolution via Alternating Optimization
Jiezhang Cao, Jingyun Liang, Kai Zhang, Wenguan Wang, Qin Wang, Yulun Zhang, Hao Tang, Luc Van Gool
[ECCV 2022] [Pytorch-Code] -
AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos
Yanze Wu, Xintao Wang, Gen Li, Ying Shan
[arXiv 2206]
[★☆] 提出了一个高清动画数据集. 提出了一个学习learnable basic operator的流程, 该算子可以加入到退化流程中生成更真实的LR样本. -
Real-RawVSR: Real-World Raw Video Super-Resolution with a Benchmark Dataset
Jiyang Yu, Jingen Liu, Liefeng Bo, Tao Mei
[ECCV 2022] [Pytorch-Code]
[★☆] 收集了一个真实的HR/LR数据集, 通过beam-splitter和两个相机收集LR, HR, 用全局和局部的对齐将HR对齐到LR上. -
Memory-Augmented Non-Local Attention for Video Super-Resolution
Jiyang Yu, Jingen Liu, Liefeng Bo, Tao Mei
[CVPR 2022] [Pytorch-Code] -
VideoINR: Learning Video Implicit Neural Representation for Continuous Space-Time Super-Resolution
Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit Goel, Zhangyang Wang, Humphrey Shi, Xiaolong Wang
[CVPR 2022] [Project] [Pytorch-Code] -
Learning Trajectory-Aware Transformer for Video Super-Resolution
Chengxu Liu, Huan Yang, Jianlong Fu, Xueming Qian
[CVPR 2022 Oral] [Pytorch-Code]
[TTVSR] -
Reference-based Video Super-Resolution Using Multi-Camera Video Triplets
Junyong Lee, Myeonghee Lee, Sunghyun Cho, Seungyong Lee
[CVPR 2022] [Project] [Pytorch-Code] -
Investigating Tradeoffs in Real-World Video Super-Resolution
Kelvin C.K. Chan, Shangchen Zhou, Xiangyu Xu, Chen Change Loy
[CVPR 2022] [Pytorch-Code]
[RealBasicVSR] -
Real-Time Super-Resolution System of 4K-Video Based on Deep Learning
Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang, He Li
[CVPR 2022] [Pytorch-Code]
[EGVSR] [★☆] 快速视频超分网络, 模型和loss参考了TecoGAN -
Video Super-Resolution Transformer
Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool
[arXiv 2106] [Pytorch-Code] -
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
Kelvin C.K. Chan, Shangchen Zhou, Xintao Wang, Chen Change Loy
[CVPR 2022] [Pytorch-Code]
[★] 在BasicVSR的基础上, 使用反复前向后向传播的结构和flow-guided deformable alignment, 提升了性能 -
DynaVSR: Dynamic Adaptive Blind VideoSuper-Resolution
Suyoung Lee, Myungsub Choi, Kyoung Mu Lee
[WACV 2021] [Project] [Pytorch-Code] -
Understanding Deformable Alignment in Video Super-Resolution
Kelvin C.K. Chan, Xintao Wang, Ke Yu, Chao Dong, Chen Change Loy
[AAAI 2021] [Project] [Pytorch-Code]
[DCN] [★] 分析了可变形卷积对齐和flow-based对齐的相似性, 指出deformable alignment中offset的多样性对VSR这样的任务有优势. 另外, 提出了一个offset fidelity loss, 用光流约束offset的学习. -
Omniscient Video Super-Resolution
Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, Tao Lu, Xin Tian, Jiayi Ma
[ICCV 2021] [Pytorch-Code]
[OVSR] -
Deep Blind Video Super-resolution
Jinshan Pan, Haoran Bai, Jiangxin Dong, Jiawei Zhang, Jinhui Tang
[ICCV 2021] [Pytorch-Code] -
COMISR:Compression-Informed Video Super-Resolution
Yinxiao Li, Pengchong Jin, Feng Yang, Ce Liu, Ming-Hsuan Yang, Peyman Milanfar
[ICCV 2021] [TF2-Code] -
Space-Time Distillation for Video Super-Resolution
Zeyu Xiao, Xueyang Fu, Jie Huang, Zhen Cheng, Zhiwei Xiong
[CVPR 2021]
[STD] [★] 分为空间和时间蒸馏两部分. 空间蒸馏通过让S和T的空间attention map接近来训练. 时间蒸馏使用ConvLSTM提取时间特征, 监督该特征训练. -
Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling
Yan-Cheng Huang, Yi-Hsin Chen, Cheng-You Lu, Hui-Po Wang, Wen-Hsiao Peng, Ching-Chun Huang
[CVPR 2021] [Project] [Pytorch-Code]
[MIMO-VRN] -
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond
Kelvin C.K. Chan, Xintao Wang, Ke Yu, Chao Dong, Chen Change Loy
[CVPR 2021] [Project] [Pytorch-Code]
[★☆] 将视频超分分解为propagation, alignment, aggregation和upsampling四部分. 在此基础上设计了BasicVSR网络, 以及加入了两个新设计模块的IconVSR -
Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
Gang Xu, Jun Xu, Zhen Li, Liang Wang, Xing Sun, Mingming Cheng
[CVPR 2021] [Pytorch-Code]
[TMNet] [★] 使用一个时间调制模块, 根据不同的t, 控制deformable conv的插帧结果. 设计了一个feature fusion模块, refine局部运动, 使用双向可变形卷积BDConvLSTM refine全局运动. -
Real-Time Super-Resolution System of 4K-Video Based on Deep Learning
Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang, He Li
[arXiv 2107] [Pytorch-Code]
[EGVSR] [★☆] 基于TecoGAN, 设计了一个轻量级视频超分模型 -
Learning the Loss Functions in a Discriminative Space for Video Restoration
Younghyun Jo, Jaeyeon Kang, Seoung Wug Oh, Seonghyeon Nam, Peter Vajda, Seon Joo Kim
[arXiv 2003] -
ISR: Deep Joint Frame Interpolation and Super-Resolution with A Multi-scale Temporal Loss
Soo Ye Kim,Jihyong Oh, Munchurl Kim
[AAAI 2020] [TF-Code] -
Space-Time-Aware Multi-Resolution Video Enhancement
Muhammad Haris, Greg Shakhnarovich, Norimichi Ukita
[CVPR 2020] [Project] [Pytorch-Code]
[STARnet] [★★] 时空联合超分 -
TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution
Yapeng Tian, Yulun Zhang, Yun Fu, Chenliang Xu
[CVPR 2020] [Pytorch-Code]
[TDAN] [★☆] 用deformable conv做VSR -
Fast and Accurate One-Stage Space-Time Video Super-Resolution
Xiaoyu Xiang, Yapeng Tian, Yulun Zhang, Yun Fu, Jan P. Allebach, Chenliang Xu
[CVPR 2020] [Pytorch-Code]
[Zooming-Slow-M] [★☆] 时空联合超分, 基于deformable卷积和ConvLSTM -
STVUN: Deep Space-Time Video Upsampling Networks
Jaeyeon Kang, Younghyun Jo, Seoung Wug Oh, Peter Vajda, Seon Joo Kim
[ECCV 2020] [Pytorch-Code] -
Across Scales & Across Dimensions: Temporal Super-Resolution using Deep Internal Learning
Liad Pollak Zuckerman, Eyal Naor, George Pisha, Shai Bagon, Michal Irani
[ECCV 2020] [Project] [Pytorch-Code]
[DeepTemporalSR] -
MuCAN: Multi-Correspondence Aggregation Network for Video Super-Resolution
Wenbo Li, Xin Tao, Taian Guo, Lu Qi, Jiangbo Lu, Jiaya Jia
[ECCV 2020] -
Video Super-Resolution with Recurrent Structure-Detail Network
Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin Wang, Qi Tian
[ECCV 2020] [Pytorch-Code]
[RSDN] -
Recurrent Back-Projection Network for Video Super-Resolution
Muhammad Haris, Greg Shakhnarovich, Norimichi Ukita
[ECCV 2020] [Project] [Pytorch-Code]
[RBPN] [★☆] 视频超分, 使用DBPN中的back-projection结构利用前n帧信息完成对当前帧的空间超分. -
Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation
Mengyu Chu, You Xie, Laura Leal-Taixe, Nils Thuerey
[SIGGRAPH 2020] [TF-Code]
[TecoGAN] [★★] 提出时空一致性的GAN和一个ping-pong loss保持long term时间一致性 -
Efficient Video Super-Resolution through Recurrent Latent Space Propagation
Dario Fuoli, Shuhang Gu, Radu Timofte
[ICCVW 2019] [Pytorch-Code]
[RLSP] [★] 用RNN做视频超分, 使用残差和pixel shuffle. -
Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation
Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, Seon Joo Kim
[CVPR 2018] [Pytorch-Code]
[DUF]
-
Clearer Frames, Anytime: Resolving Velocity Ambiguity in Video Frame Interpolation
Zhihang Zhong, Xiao Sun, Yu Qiao, Gurunandan Krishnan, Sizhuo Ma, Jian Wang
[ECCV 2024 Oral] [Pytorch-Code] -
AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation
Zhen Li, Zuo-Liang Zhu, Ling-Hao Han, Qibin Hou, Chun-Le Guo, Ming-Ming Cheng
[CVPR 2023] [Project] [Pytorch-Code] -
BiFormer: Learning Bilateral Motion Estimation via Bilateral Transformer for 4K Video Frame Interpolation
Junheum Park, Jintae Kim, Chang-Su Kim
[CVPR 2023] [Pytorch-Code] -
A Unified Pyramid Recurrent Network for Video Frame Interpolation
Xin Jin, Longhai Wu, Jie Chen, Youxin Chen, Jayoon Koo, Cheul-hee Hahm
[CVPR 2023] [Pytorch-Code] -
Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation
Guozhen Zhang, Yuhan Zhu, Haonan Wang, Youxin Chen, Gangshan Wu, Limin Wang
[CVPR 2023] [Pytorch-Code]
[EMA-VFI] -
Beyond a Video Frame Interpolator: A Space Decoupled Learning Approach to Continuous Image Transition
Tao Yang, Peiran Ren, Xuansong Xie, Xiansheng Hua, Lei Zhang
[arXiv 2203] [Pytorch-Code]
[SDL] -
FILM: Frame Interpolation for Large Motion
Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, Brian Curless
[ECCV 2022] [Project] [TF2-Code]
[★★] end-to-end的插帧网络, 使用类似PWCNet的多尺度flow预测结构, 特征提取部分使用共享权值对图像金字塔提特征, 首次使用gram matrix loss, 使生成帧更清晰. 网络结构很简单明了, 但效果很好, 训练和模型设计的细节应该是功不可没. -
Enhancing Deformable Convolution based Video Frame Interpolation with Coarse-to-fine 3D CNN
Duolikun Danier, Fan Zhang, David Bull
[arXiv 2202] [Pytorch-Code]
[EDC] -
A Subjective Quality Study for Video Frame Interpolation
Duolikun Danier, Fan Zhang, David Bull
[arXiv 2202] [Project]
[BVI-VFI] -
Splatting-based Synthesis for Video Frame Interpolation
Simon Niklaus, Ping Hu, Jiawen Chen
[arXiv 2201] -
Deep Bayesian Video Frame Interpolation
Zhiyang Yu, Yu Zhang, Xujie Xiang, Dongqing Zou, Xijun Chen, Jimmy S. Ren
[ECCV 2022] [Pytorch-Code]
[DBVI] -
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu, Xiaoming Huang, Ying Tai, Chengjie Wang, Jie Yang
[CVPR 2022] [Pytorch-Code]<Br -
ST-MFNet: A Spatio-Temporal Multi-Flow Network for Frame Interpolation
Duolikun Danier, Fan Zhang, David Bull
[CVPR 2022] [Project] [Pytorch-Code] -
Real-time Spatial Temporal Transformer
Zhicheng Geng, Luming Liang, Tianyu Ding, Ilya Zharkov
[CVPR 2022] [Pytorch-Code]
[RSTT] -
Video Frame Interpolation Transformer
Zhihao Shi, Xiangyu Xu, Xiaohong Liu, Jun Chen, Ming-Hsuan Yang
[CVPR 2022] [Pytorch-Code] -
Many-to-many Splatting for Efficient Video Frame Interpolation
Ping Hu, Simon Niklaus, Stan Sclaroff, Kate Saenko
[CVPR 2022] [Code]
[M2M] [★★] 首先用off-the-shell model预测0->1/1->0的光流, 再通过motion refinement network预测N个光流图及置信度map, 最后利用N个光流进行forward warp并fuse结果. 使用Low-rank Feature Modulation加强光流的低秩约束. -
DeMFI: Deep Joint Deblurring and Multi-Frame Interpolation with Flow-Guided Attentive Correlation and Recursive Boosting
Jihyong Oh, Munchurl Kim
[arXiv 2111] [Pytorch-Code] -
EA-Net: Edge-Aware Network for Flow-based Video Frame Interpolation
Bin Zhao, Xuelong Li
[arXiv 2105]
[★] 基于光流的插帧, 加入了edge信息 -
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation
Junheum Park, Chul Lee, Chang-Su Kim
[ICCV 2021] [Pytorch-Code]
[ABME] [★] 先大致估计t->0, t->1的光流, 生成初始It, 再refine光流和生成帧 -
Revisiting Adaptive Convolutions for Video Frame Interpolation
Simon Niklaus, Long Mai, Oliver Wang
[WACV 2021] [Pytorch-Code]
[SepConv++] [★] 使用adaptive conv做插帧, 在sepconv的基础上提出了一些trick. 要点为: 1.预测x和y方向的conv kernel; 2.在预测kernel时不padding; 3.输入两帧一起逐channel归一化到0均值单位方差; 4. 对kernel做norm; 5.使用VGG loss -
XVFI: eXtreme Video Frame Interpolation
Hyeonjun Sim, Jihyong Oh, Munchurl Kim
[ICCV 2021 Oral] [Pytorch-Code]
[★★] 1. 提出了一个4K, 1000fps的插帧数据集; 2. 提出一个共享参数的多尺度插帧网络, 通过调整预测的scale级数, 处理不同分辨率和偏移. -
FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation
Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, Du Tran
[CVPR 2021] [Project] [Pytorch-Code]
[★★] 首次提出用3D卷积做视频插帧, 结构为UNet, 输入为前后四帧, 输出为需要插的k-1帧 -
CDFI: Compression-Driven Network Design for Frame Interpolation
Tianyu Ding, Luming Liang, Zhihui Zhu, Ilya Zharkov
[CVPR 2021] [Pytorch-Code]
[★] 通过加入L1正则引入稀疏性, 然后将模型输入层数逐次减小, 得到压缩后的模型. 论文中表示压缩后的结构更合理, from scratch训练该网络就能得到与大模型相近的性能. 之后在小模型上加入了一些改进模块, 进一步提高了精度 -
Deep Animation Video Interpolation in the Wild
Li Siyao, Shiyu Zhao, Weijiang Yu, Wenxiu Sun, Dimitris N. Metaxas, Chen Change Loy, Ziwei Liu
[CVPR 2021] [Pytorch-Code]
[AnimeInterp] [★] 动画的插帧, 针对动画纹理平滑和位移大的特点, 设计了segment匹配模块和coarse-to-fine的光流匹配模块. -
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation
Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, Shuchang Zhou
[arXiv 2011] [Pytorch-Code] [Software]
[★★] 使用一个coarse-to-fine的网络IFNet预测f1,f2到t时刻的光流, 融合部分使用网络预测fusion map和residual. 为更好训练光流, 使用leakage distillation的方法, 先用一训练好的大网络预测中间光流的值. -
Channel Attention Is All You Need for Video Frame Interpolation
Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, Kyoung Mu Lee
[AAAI 2020] [Project] [Pytorch-Code]
[CAIN] [★★] 设计了一个pixelshuffle + attention residual block的网络, 无需光流估计和warp操作. -
Video Frame Interpolation Via Residue Refinement
Haopeng Li, Yuan Yuan, Qi Wang
[ICASSP 2020] [Pytorch-Code]
[RRIN] [★] 残差和UNet结构预测光流, warp, refine -
BMBC: Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation
Junheum Park, Keunsoo Ko, Chul Lee, Chang-Su Kim
[ECCV 2020] [Pytorch-Code]
[BMBC] [★] 基于光流的插帧, 提出了用中间光流值取得前后帧的feature组成bilateral cost volume -
All at Once: Temporally Adaptive Multi-Frame Interpolation with Advanced Motion Modeling
Zhixiang Chi, Rasoul Mohammadi Nasiri, Zheng Liu, Juwei Lu, Jin Tang, Konstantinos N Plataniotis
[ECCV 2020] [Project] [Code]
[★] 1.使用三次多项式对光流建模; 2.用temporal pyramidal形式, 有易到难逐次估计t1/t7->t2/t6->t3/t5->t4; 3. 估计光流时, 使用relaxed loss, 即允许估计的光流有小范围误差 -
Enhanced Quadratic Video Interpolation
Yihao Liu, Liangbin Xie, Li Siyao, Wenxiu Sun, Yu Qiao, Chao Dong
[ECCVW 2020] [Pytorch-Code]
[EQVI] [★] 1.用最小二乘计算quadratic光流; 2.用resnet18提取的contextual特征和原图一起预测残差; 3.对两个尺度的输入用相同网络处理, 并用一个fusion net预测map进行融合 -
Video Frame Interpolation without Temporal Priors
Youjian Zhang, Chaoyue Wang, Dacheng Tao
[NeurIPS 2020] [Pytorch-Code]
[UTI-VFI] [★] 用残差网络先从模糊帧中预测清晰的起始和结束关键帧, 再用二次光流refine -
Softmax Splatting for Video Frame Interpolation
Simon Niklaus, Feng Liu
[CVPR 2020] [Pytorch-Code]
[SoftSplat] [★☆] 使用前向光流warp的插帧, 大致浏览, 效果不错. 主要创新点为使用I0和I1_warp的亮度一致性作为权重Z, 并用一网络refine Z, 最后在融合时使用exp保证了尺度不变性(此处是从深度图作为Z来论述的). -
Scene-Adaptive Video Frame Interpolation via Meta-Learning
Myungsub Choi, Janghoon Choi, Sungyong Baik, Tae Hyun Kim, Kyoung Mu Lee
[CVPR 2020] [Project] [Pytorch-Code]
[Meta Interpolation] -
FeatureFlow: Robust Video Interpolation via Structure-to-Texture Generation
Shurui Gui, Chaoyue Wang, Qihua Chen, Dacheng Tao
[CVPR 2020] [Pytorch-Code]
[★] 首先, 根据两帧输入图像和edge, 预测中间帧的structure图; 然后设计了一个texture compensator生成纹理细节. 网络用deformable conv做插帧和纹理补偿. -
Blurry Video Frame Interpolation
Wang Shen, Wenbo Bao, Guangtao Zhai, Li Chen, Xiongkuo Min, Zhiyong Gao
[CVPR 2020 Oral] [Pytorch-Code]
[BIN] [★] 空间采用金字塔型结构, 逐层利用多帧信息, 为保证帧间一致性, 使用了ConvLSTM挖掘temporal关系 -
AdaCoF: Adaptive Collaboration of Flows for Video Frame Interpolation
Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, Sangyoun Lee
[CVPR 2020] [Pytorch-Code] -
Deep Slow Motion Video Reconstruction with Hybrid Imaging System
Avinash Paliwal, Nima Kalantari
[TPAMI 2020] [Project] [Pytorch-Code]
[Deep-SloMo] -
Robust Video Frame Interpolation With Exceptional Motion Map
Minho Park, Hak Gu Kim, Sangmin Lee, Yong Man Ro
[TCSVT 2020] -
ALANET: Adaptive Latent Attention Network for Joint Video Deblurring and Interpolation
Akash Gupta, Abhishek Aich, Amit K. Roy-Chowdhury
[MM 2020] [Project] [Code]
[★] 用帧内和帧间attention做去模糊和插帧 -
Depth-Aware Video Frame Interpolation
Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, Ming-Hsuan Yang
[CVPR 2019] [Project] [Pytorch-Code]
[DAIN] [★★☆] -
Unsupervised Video Interpolation using Cycle Consistency
Fitsum A. Reda, Deqing Sun, Aysegul Dundar, Mohammad Shoeybi, Guilin Liu, Kevin J. Shih, Andrew Tao, Jan Kautz, Bryan Catanzaro
[ICCV 2019] [Project] [Pytorch-Code] -
IM-Net for High Resolution Video Frame Interpolationn
Tomer Peleg, Pablo Szekely, Doron Sabo, Omry Sendik
[CVPR 2019] [Project] [Pytorch-Code]
[★] 预测motion field vector(光流)和occlusion map做插帧 -
Quadratic video interpolation
Xiangyu Xu, Siyao Li, Wenxiu Sun, Qian Yin, Ming-Hsuan Yang
[NeurIPS 2019] [Project] [Pytorch-Code]
[QVI] [★] 利用-1,0,1三帧的信息对光流进行二次插值 -
Deep Video Frame Interpolation using Cyclic Frame Generation
Yu-Lun Liu, Yi-Tung Liao, Yen-Yu Lin, Yung-Yu Chuang
[Project] [TF-Code]
[CyclicGen] [★☆] 用2个预测帧预测输入帧, 作为consistency loss, 提高生成帧的质量. 另外提出了光流线性约束loss, 并将边缘信息加入到输入中 -
MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement
Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, Ming-Hsuan Yang
[TPAMI 2019] [Project] [Pytorch-Code]
[★★] 提出一个自适应warping layer, 将warping中简单的bilinear操作改为学习的插值kernel与双线性核相结合的操作 -
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation
Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, Jan Kautz
[CVPR 2018] [Project] [Pytorch-Code]
[★☆] 视频插帧. 首先预测双向光流, 接下来在每个要插值的时刻t, 用一个网络refine光流并预测visibility map, 最后根据光流和visibility map插值生成t时刻图像. -
Context-aware Synthesis for Video Frame Interpolation
Simon Niklaus, Feng Liu
[CVPR 2018] [Project] -
Video Frame Interpolation via Adaptive Separable Convolution
Simon Niklaus, Long Mai, Feng Liu
[ICCV 2017] [Project] [Pytorch-Code]
[sepconv-slomo] -
Video Frame Interpolation via Adaptive Convolution
Simon Niklaus, Long Mai, Feng Liu
[CVPR 2017] [Project]
[adaconv-slomo]
-
Snow Removal in Video: A New Dataset and A Novel Method
Haoyu Chen, Jingjing Ren, Jinjin Gu, Hongtao Wu, Xuequan Lu, Haoming Cai, Lei Zhu
[ICCV 2023] [Project] [Pytorhc-Code] -
Recurrent Video Restoration Transformer with Guided Deformable Attention
Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan, Eddy Ilg, Simon Green, Jiezhang Cao, Kai Zhang, Radu Timofte, Luc Van Gool
[NeurlPS 2022] [Pytorhc-Code]
[RVRT] -
Context-Aware Video Reconstruction for Rolling Shutter Cameras
Bin Fan, Yuchao Dai, Zhiyuan Zhang, Qi Liu, Mingyi He
[CVPR 2022] [Code]
[CVR] -
Neural Global Shutter: Learn to Restore Video from a Rolling Shutter Camera with Global Reset Feature
Zhixiang Wang, Xiang Ji, Jia-Bin Huang, Shin'ichi Satoh, Xiao Zhou, Yinqiang Zheng
[CVPR 2022] [Code] -
Bringing Old Films Back to Life
Ziyu Wan, Bo Zhang, Dongdong Chen, Jing Liao
[CVPR 2022] [Project] -
Revisiting Temporal Alignment for Video Restoration
Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu
[CVPR 2022] [Pytorch-Code] -
VRT: A Video Restoration Transformer
Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool
[arXiv 2201] [Pytorch-Code]
🔥 -
Learning Temporal Consistency for Low Light Video Enhancement from Single Images
Fan Zhang, Yu Li, Shaodi You, Ying Fu
[CVPR 2021] [Pytorch-Code]** [★☆] 训练时, 对图像做分割并预测前景的随机光流, 计算warp后图像和原图像处理结果的consistency loss, 加强时间一致性, 另外在生成训练样本时, 加入了一些noise. -
EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
Xintao Wang, Kelvin C.K. Chan, Ke Yu, Chao Dong, Chen Change Loy
[CVPRW 2019] [Project] [Pytorch-Code] -
Learning to See Moving Objects in the Dark
Haiyang Jiang, Yinqiang Zheng
[ICCV 2019] [TF-Code]
[★★] 提供了一个暗光视频增强数据集, 通过设计camera system, 获取对齐的亮暗视频对. 设计一个基于3DUnet的网络. -
Seeing Motion in the Dark
Chen Chen, Qifeng Chen, Minh N. Do, Vladlen Koltun
[ICCV 2019] [TF-Code]
[★☆] 对一组静态的视频帧做亮度增强, 使用Deep Siamese Network, 增强帧间一致性.
- Deep Online Fused Video Stabilization
Zhenmei Shi, Fuhao Shi, Wei-Sheng Lai, Chia-Kai Liang, Yingyu Liang
[arXiv 2102] [Project] [Pytorch-Code]
-
Deep Discriminative Spatial and Temporal Network for Efficient Video Deblurring
Jinshan Pan], Boming Xu, Jiangxin Dong, Jianjun Ge, Jinhui Tang
[CVPR 2023] [Pytorch-Code]
[DSTNet] -
Multi-Scale Memory-Based Video Deblurring
Bo Ji, Angela Yao
[CVPR 2022] [Pytorch-Code] -
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Jiri Matas, Marc Pollefeys
[CVPR 2021] [Pytorch-Code]
[★] 从单张模糊图像和背景图中恢复t张清晰的图像, 网络结构为一个encoder+t个renderers, 采用了几个loss分别用于处理目标外观, sharpness及空间一致性等. -
ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring
Dongxu Li, Chenchen Xu, Kaihao Zhang, Xin Yu, Yiran Zhong, Wenqi Ren, Hanna Suominen, Hongdong Li
[CVPR 2021] [Project] [Pytorch-Code] -
Learning Event-Driven Video Deblurring and Interpolation
Songnan Lin, Jiawei Zhang, Jinshan Pan, Zhe Jiang, Dongqing Zou, Yongtian Wang, Jing Chen, Jimmy Ren
[ECCV 2020] -
Efficient Spatio-Temporal Recurrent Neural Network for Video Deblurring
Zhihang Zhong, Ye Gao, Yinqiang Zheng, Bo Zheng
[ECCV 2020 Spotlight] [Pytorch-Code]
[ESTRNN] -
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior
Jinshan Pan, Haoran Bai, Jinhui Tang
[CVPR 2020] [Project] [Pytorch-Code]
[CDVD-TSP] [★☆] 使用光流将先后帧warp到当前帧, 和一个新提出的sharpness prior进行concat, 送入网络进行处理. 通过级联(2阶段)的方式提高精度. -
Spatio-Temporal Filter Adaptive Network for Video Deblurring
Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie, Wangmeng Zuo, Jimmy Ren
[ICCV 2019] [Project] [Pytorch-Code]
[STFAN]
- Semi-supervised Video Deraining with Dynamical Rain Generator
Zongsheng Yue, Jianwen Xie, Qian Zhao, Deyu Meng
[CVPR 2021] [Pytorch-Code]
[S2VD]
- Learning to Restore Hazy Video: A New Real-World Dataset and A New Method
Xinyi Zhang, Hang Dong, Jinshan Pan, Chao Zhu, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, Fei Wang
[CVPR 2021]
- Blind Video Deflickering by Neural Filtering with a Flawed Atlas
Chenyang Lei, Xuanchi Ren, Zhaoxiang Zhang, Qifeng Chen
[CVPR 2023] [Project] [Pytorch-Code]
-
ProPainter: Improving Propagation and Transformer for Video Inpainting
Shangchen Zhou, Chongyi Li, Kelvin C.K. Chan,, Chen Change Loy
[ICCV 2023] [Project] [Pytorch-Code] 🔥 -
The DEVIL is in the Details: A Diagnostic Evaluation Benchmark for Video Inpainting
Ryan Szeto, Jason J. Corso
[CVPR 2022] [Code] -
Towards An End-to-End Framework for Flow-Guided Video Inpainting
Zhen Li, Cheng-Ze Lu, Jianhua Qin, Chun-Le Guo, Ming-Ming Cheng
[CVPR 2022] [Pytorch-Code]
[E2FGVI] -
Internal Video Inpainting by Implicit Long-range Propagation
Hao Ouyang, Tengfei Wang, Qifeng Chen
[ICCV 2021] [Project] [Pytorch-Code]
[IIVI] -
Progressive Temporal Feature Alignment Network for Video Inpainting
Xueyan Zou, Linjie Yang, Ding Liu, Yong Jae Lee
[CVPR 2021] [Pytorch-Code]
[TSAM] -
Short-Term and Long-Term Context Aggregation Network for Video Inpainting
Ang Li, Shanshan Zhao, Xingjun Ma, Mingming Gong, Jianzhong Qi, Rui Zhang, Dacheng Tao, Ramamohanarao Kotagirig
[ECCV 2020] -
Learning Joint Spatial-Temporal Transformations for Video Inpainting
Yanhong Zeng, Jianlong Fu, Hongyang Chao
[ECCV 2020] [Pytorch-Code]
[STTN] -
DVI: Depth Guided Video Inpainting for Autonomous Driving
Miao Liao, Feixiang Lu, Dingfu Zhou, Sibo Zhang, Wei Li, Ruigang Yang
[ECCV 2020] [Project] [Code]
-
VMFormer: End-to-End Video Matting with Transformer
Jiachen Li, Vidit Goel, Marianna Ohanyan, Shant Navasardyan, Yunchao Wei, Humphrey Shi
[arXiv 2205] [Project] [Pytorch-Code] -
One-Trimap Video Matting
Hongje Seong, Seoung Wug Oh, Brian Price, Euntai Kim, Joon-Young Lee
[ECCV 2022] [Pytorch-Code]
[OTVM] -
Human Instance Matting via Mutual Guidance and Multi-Instance Refinement
Yanan Sun, Chi-Keung Tang, Yu-Wing Tai
[CVPR 2022 Oral] [Pytorch-Code]
[InstMatt] -
MatteFormer: Transformer-Based Image Matting via Prior-Tokens
GyuTae Park, SungJoon Son, JaeYoung Yoo, SeHo Kim, Nojun Kwak
[CVPR 2022] [Pytorch-Code] -
Robust High-Resolution Video Matting with Temporal Guidance
Shanchuan Lin, Linjie Yang, Imran Saleemi, Soumyadip Sengupta
[WACV 2022] [Project] [Pytorch-Code]
轻量级视频matting, 效果不错. 用ConvGRU利用时域信息, 用Deep guided filter处理大图
[RVM] [★★] -
Deep Video Matting via Spatio-Temporal Alignment and Aggregation
Yanan Sun, Guanzhi Wang, Qiao Gu, Chi-Keung Tang, Yu-Wing Tai
[CVPR 2021]
[DVM]
- Video Demoireing with Relation-Based Temporal Consistency
Peng Dai, Xin Yu, Lan Ma, Baoheng Zhang, Jia Li, Wenbo Li, Jiajun Shen, Xiaojuan Qi
[CVPR 2022] [Project] [Pytorch-Code]
-
Pyramidal Flow Matching for Efficient Video Generative Modeling
Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song, Yadong Mu, Zhouchen Lin
[arXiv 2410] [Project] [Pytorch-Code]
[Pyramidal Flow] 🔥 -
CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang
[CVPR 2024] [Pytorch-Code]
[CogVideo] 🔥 -
MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation
Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin Jin, Baining Guo
[CVPR 2023] [Pytorch-Code] -
GAN-Supervised Dense Visual Alignment
Sihyun Yu, Kihyuk Sohn, Subin Kim, Jinwoo Shin
[CVPR 2023] [Project] [Pytorch-Code] -
Conditional Image-to-Video Generation with Latent Flow Diffusion Models
Haomiao Ni, Changhao Shi, Kai Li, Sharon X. Huang, Martin Renqiang Min
[CVPR 2023] [Pytorch-Code] -
GAN-Supervised Dense Visual Alignment
William Peebles, Jun-Yan Zhu, Richard Zhang, Antonio Torralba, Alexei A. Efros, Eli Shechtman
[CVPR 2022 Oral] [Project] [Pytorch-Code] -
Thin-Plate Spline Motion Model for Image Animation
Jian Zhao, Hui Zhang
[CVPR 2022] [Pytorch-Code] -
Make It Move: Controllable Image-to-Video Generation with Text Descriptions
Yaosi Hu, Chong Luo, Zhenzhong Chen
[CVPR 2022] [Pytorch-Code]
[MAGE] -
StyleGAN-V: A Continuous Video Generator with the Price, Image Quality and Perks of StyleGAN2
Ivan Skorokhodov, Sergey Tulyakov, Mohamed Elhoseiny
[CVPR 2022] [Project] [Pytorch-Code] -
Playable Environments: Video Manipulation in Space and Time
Willi Menapace, Stéphane Lathuilière, Aliaksandr Siarohin, Christian Theobalt, Sergey Tulyakov, Vladislav Golyanik, Elisa Ricci
[CVPR 2022] [Pytorch-Code] -
Show Me What and Tell Me How: Video Synthesis via Multimodal Conditioning
Ligong Han, Jian Ren, Hsin-Ying Lee, Francesco Barbieri, Kyle Olszewski, Shervin Minaee
[CVPR 2022] [Project] [Pytorch-Code]
[MMVID] -
Attribute Group Editing for Reliable Few-shot Image Generation
Guanqi Ding, Xinzhe Han, Shuhui Wang, Shuzhe Wu, Xin Jin, Dandan Tu, Qingming Huang
[CVPR 2022] [Pytorch-Code]
[AGE]
-
StableVideo: Text-driven Consistency-aware Diffusion Video Editing
Wenhao Chai, Xun Guo✉️, Gaoang Wang, Yan Lu
[ICCV 2023 Oral] [Project] [Pytorch-Code]
🔥 -
FateZero: Fusing Attentions for Zero-shot Text-based Video Editing
Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, Qifeng Chen
[ICCV 2023 Oral] [Project] [Pytorch-Code]
🔥 -
Shape-aware Text-driven Layered Video Editing
Yao-Chih Lee, Ji-Ze G. Jang, Yi-Ting Chen, Elizabeth Qiu, Jia-Bin Huang
[CVPR 2023] [Project] [Pytorch-Code] -
Diffusion Video Autoencoders: Toward Temporally Consistent Face Video Editing via Disentangled Video Encoding
Gyeongman Kim, Hajin Shim, Hyunsu Kim, Yunjey Choi, Junho Kim, Eunho Yang
[CVPR 2023] [Project] [Pytorch-Code] -
DPE: Disentanglement of Pose and Expression for General Video Portrait Editing
Youxin Pang, Yong Zhang, Weize Quan, Yanbo Fan, Xiaodong Cun, Ying Shan, Dong-ming Yan
[CVPR 2023] [Project] [Pytorch-Code]
-
AutoTransition: Learning to Recommend Video Transition Effects
Yaojie Shen, Libo Zhang, Kai Xu, Xiaojie Jin
[ECCV 2022] [字节跳动] [Pytorch-Code]
自动生成剪辑 -
ClothFormer: Taming Video Virtual Try-on in All Module
Jianbin Jiang, Tan Wang, He Yan, Junhui Liu
[CVPR 2022 Oral] [Project] [Pytorch-Code] -
Real-time Localized Photorealistic Video Style Transfer
Xide Xia, Tianfan Xue, Wei-Sheng Lai, Zheng Sun, Abby Chang, Brian Kulis, Jiawen Chen
[WACV 2021]
[★★] 基于HDRNet的视频style transfer. -
Single-frame Regularization for Temporally Stable CNNs
Gabriel Eilertsen, Rafał K. Mantiuk, Jonas Unger
[CVPR 2019]
[★☆] 提出增强视频帧间稳定性的一些正则loss, 包括Stability regularization(加入高斯噪声), Transform invariance regularization(几何变换), Sparse Jacobian regularization(梯度一致loss). -
Blind Video Temporal Consistency
Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, Deqing Sun, Sylvain Paris, Hanspeter Pfister
[TOG 2015] [Project]
[★] 内容和时域一致联合最小化, 适用于各种处理算子