-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathzmul.c
1107 lines (1029 loc) · 40.1 KB
/
zmul.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* zmul - faster than usual multiplying and squaring routines
*
* Copyright (C) 1999-2007,2021-2023 David I. Bell
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1991/01/09 20:01:31
* File existed as early as: 1991
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* Faster than usual multiplying and squaring routines.
* The algorithm used is the reasonably simple one from Knuth, volume 2,
* section 4.3.3. These recursive routines are of speed O(N^1.585)
* instead of O(N^2). The usual multiplication and (almost usual) squaring
* algorithms are used for small numbers. On a 386 with its compiler, the
* two algorithms are equal in speed at about 100 decimal digits.
*/
#include "config.h"
#include "zmath.h"
#include "errtbl.h"
#include "banned.h" /* include after system header <> includes */
STATIC HALF *tempbuf; /* temporary buffer for multiply and square */
S_FUNC LEN domul(HALF *v1, LEN size1, HALF *v2, LEN size2, HALF *ans);
S_FUNC LEN dosquare(HALF *vp, LEN size, HALF *ans);
/*
* Multiply two numbers using the following formula recursively:
* (A*S+B)*(C*S+D) = (S^2+S)*A*C + S*(A-B)*(D-C) + (S+1)*B*D
* where S is a power of 2^16, and so multiplies by it are shifts, and
* A,B,C,D are the left and right HALFs of the numbers to be multiplied.
*
* given:
* z1 numbers to multiply
* z2 numbers to multiply
* res result of multiplication
*/
void
zmul(ZVALUE z1, ZVALUE z2, ZVALUE *res)
{
LEN len; /* size of array */
if (ziszero(z1) || ziszero(z2)) {
*res = _zero_;
return;
}
if (zisunit(z1)) {
zcopy(z2, res);
res->sign = (z1.sign != z2.sign);
return;
}
if (zisunit(z2)) {
zcopy(z1, res);
res->sign = (z1.sign != z2.sign);
return;
}
/*
* Allocate a temporary buffer for the recursion levels to use.
* An array needs to be allocated large enough for all of the
* temporary results to fit in. This size is about twice the size
* of the largest original number, since each recursion level uses
* the size of its given number, and whose size is 1/2 the size of
* the previous level. The sum of the infinite series is 2.
* Add some extra words because of rounding when dividing by 2
* and also because of the extra word that each multiply needs.
*/
len = z1.len;
if (len < z2.len)
len = z2.len;
len = 2 * len + 64;
tempbuf = zalloctemp(len);
res->sign = (z1.sign != z2.sign);
res->v = alloc(z1.len + z2.len + 2);
res->len = domul(z1.v, z1.len, z2.v, z2.len, res->v);
}
/*
* Recursive routine to multiply two numbers by splitting them up into
* two numbers of half the size, and using the results of multiplying the
* sub-pieces. The result is placed in the indicated array, which must be
* large enough for the result plus one extra word (size1 + size2 + 1).
* Returns the actual size of the result with leading zeroes stripped.
* This also uses a temporary array which must be twice as large as
* one more than the size of the number at the top level recursive call.
*
* given:
* v1 first number
* size1 size of first number
* v2 second number
* size2 size of second number
* ans location for result
*/
S_FUNC LEN
domul(HALF *v1, LEN size1, HALF *v2, LEN size2, HALF *ans)
{
LEN shift; /* amount numbers are shifted by */
LEN sizeA; /* size of left half of first number */
LEN sizeB; /* size of right half of first number */
LEN sizeC; /* size of left half of second number */
LEN sizeD; /* size of right half of second number */
LEN sizeAB; /* size of subtraction of A and B */
LEN sizeDC; /* size of subtraction of D and C */
LEN sizeABDC; /* size of product of above two results */
LEN subsize; /* size of difference of HALFs */
LEN copysize; /* size of number left to copy */
LEN sizetotal; /* total size of product */
LEN len; /* temporary length */
HALF *baseA; /* base of left half of first number */
HALF *baseB; /* base of right half of first number */
HALF *baseC; /* base of left half of second number */
HALF *baseD; /* base of right half of second number */
HALF *baseAB; /* base of result of subtraction of A and B */
HALF *baseDC; /* base of result of subtraction of D and C */
HALF *baseABDC; /* base of product of above two results */
HALF *baseAC; /* base of product of A and C */
HALF *baseBD; /* base of product of B and D */
FULL carry; /* carry digit for small multiplications */
FULL carryACBD; /* carry from addition of A*C and B*D */
FULL digit; /* single digit multiplying by */
HALF *temp; /* base for temporary calculations */
bool neg; /* whether intermediate term is negative */
register HALF *hd, *h1=NULL, *h2=NULL; /* for inner loops */
SIUNION sival; /* for addition of digits */
/* firewall */
if (v1 == NULL) {
math_error("%s: v1 NULL", __func__);
not_reached();
}
if (ans == NULL) {
math_error("%s: ans NULL", __func__);
not_reached();
}
/*
* Trim the numbers of leading zeroes and initialize the
* estimated size of the result.
*/
hd = &v1[size1 - 1];
while ((*hd == 0) && (size1 > 1)) {
hd--;
size1--;
}
hd = &v2[size2 - 1];
while ((*hd == 0) && (size2 > 1)) {
hd--;
size2--;
}
sizetotal = size1 + size2;
/*
* First check for zero answer.
*/
if (((size1 == 1) && (*v1 == 0)) || ((size2 == 1) && (*v2 == 0))) {
*ans = 0;
return 1;
}
/*
* Exchange the two numbers if necessary to make the number of
* digits of the first number be greater than or equal to the
* second number.
*/
if (size1 < size2) {
len = size1; size1 = size2; size2 = len;
hd = v1; v1 = v2; v2 = hd;
}
/*
* If the smaller number has only a few digits, then calculate
* the result in the normal manner in order to avoid the overhead
* of the recursion for small numbers. The number of digits where
* the algorithm changes is settable from 2 to maxint.
*/
if (size2 < conf->mul2) {
/*
* First clear the top part of the result, and then multiply
* by the lowest digit to get the first partial sum. Later
* products will then add into this result.
*/
hd = &ans[size1];
len = size2;
while (len--)
*hd++ = 0;
digit = *v2++;
h1 = v1;
hd = ans;
carry = 0;
len = size1;
while (len >= 4) { /* expand the loop some */
len -= 4;
sival.ivalue = ((FULL) *h1++) * digit + carry;
/* ignore Saber-C warning #112 - get ushort from uint */
/* OK to ignore on name domul`sival */
*hd++ = sival.silow;
carry = sival.sihigh;
sival.ivalue = ((FULL) *h1++) * digit + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
sival.ivalue = ((FULL) *h1++) * digit + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
sival.ivalue = ((FULL) *h1++) * digit + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (len--) {
sival.ivalue = ((FULL) *h1++) * digit + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
*hd = (HALF)carry;
/*
* Now multiply by the remaining digits of the second number,
* adding each product into the final result.
*/
h2 = ans;
while (--size2 > 0) {
digit = *v2++;
h1 = v1;
hd = ++h2;
if (digit == 0)
continue;
carry = 0;
len = size1;
while (len >= 4) { /* expand the loop some */
len -= 4;
sival.ivalue = ((FULL) *h1++) * digit
+ ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
sival.ivalue = ((FULL) *h1++) * digit
+ ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
sival.ivalue = ((FULL) *h1++) * digit
+ ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
sival.ivalue = ((FULL) *h1++) * digit
+ ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (len--) {
sival.ivalue = ((FULL) *h1++) * digit
+ ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (carry) {
sival.ivalue = ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
}
/*
* Now return the true size of the number.
*/
len = sizetotal;
hd = &ans[len - 1];
while ((*hd == 0) && (len > 1)) {
hd--;
len--;
}
return len;
}
/*
* Need to multiply by a large number.
* Allocate temporary space for calculations, and calculate the
* value for the shift. The shift value is 1/2 the size of the
* larger (first) number (rounded up). The amount of temporary
* space needed is twice the size of the shift, plus one more word
* for the multiply to use.
*/
shift = (size1 + 1) / 2;
temp = tempbuf;
tempbuf += (2 * shift) + 1;
/*
* Determine the sizes and locations of all the numbers.
* The value of sizeC can be negative, and this is checked later.
* The value of sizeD is limited by the full size of the number.
*/
baseA = v1 + shift;
baseB = v1;
baseC = v2 + ((shift <= size2) ? shift : size2);
baseD = v2;
baseAB = ans;
baseDC = ans + shift;
baseAC = ans + shift * 2;
baseBD = ans;
sizeA = size1 - shift;
sizeC = size2 - shift;
sizeB = shift;
hd = &baseB[shift - 1];
while ((*hd == 0) && (sizeB > 1)) {
hd--;
sizeB--;
}
sizeD = shift;
if (sizeD > size2)
sizeD = size2;
hd = &baseD[sizeD - 1];
while ((*hd == 0) && (sizeD > 1)) {
hd--;
sizeD--;
}
/*
* If the smaller number has a high half of zero, then calculate
* the result by breaking up the first number into two numbers
* and combining the results using the obvious formula:
* (A*S+B) * D = (A*D)*S + B*D
*/
if (sizeC <= 0) {
len = domul(baseB, sizeB, baseD, sizeD, ans);
hd = &ans[len];
len = sizetotal - len;
while (len--)
*hd++ = 0;
/*
* Add the second number into the first number, shifted
* over at the correct position.
*/
len = domul(baseA, sizeA, baseD, sizeD, temp);
h1 = temp;
hd = ans + shift;
carry = 0;
while (len--) {
sival.ivalue = ((FULL) *h1++) + ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (carry) {
sival.ivalue = ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
/*
* Determine the final size of the number and return it.
*/
len = sizetotal;
hd = &ans[len - 1];
while ((*hd == 0) && (len > 1)) {
hd--;
len--;
}
tempbuf = temp;
return len;
}
/*
* Now we know that the high HALFs of the numbers are nonzero,
* so we can use the complete formula.
* (A*S+B)*(C*S+D) = (S^2+S)*A*C + S*(A-B)*(D-C) + (S+1)*B*D.
* The steps are done in the following order:
* A-B
* D-C
* (A-B)*(D-C)
* S^2*A*C + B*D
* (S^2+S)*A*C + (S+1)*B*D (*)
* (S^2+S)*A*C + S*(A-B)*(D-C) + (S+1)*B*D
*
* Note: step (*) above can produce a result which is larger than
* the final product will be, and this is where the extra word
* needed in the product comes from. After the final subtraction is
* done, the result fits in the expected size. Using the extra word
* is easier than suppressing the carries and borrows everywhere.
*
* Begin by forming the product (A-B)*(D-C) into a temporary
* location that we save until the final step. Do each subtraction
* at positions 0 and S. Be very careful about the relative sizes
* of the numbers since this result can be negative. For the first
* step calculate the absolute difference of A and B into a temporary
* location at position 0 of the result. Negate the sign if A is
* smaller than B.
*/
neg = false;
if (sizeA == sizeB) {
len = sizeA;
h1 = &baseA[len - 1];
h2 = &baseB[len - 1];
while ((len > 1) && (*h1 == *h2)) {
len--;
h1--;
h2--;
}
}
if ((sizeA > sizeB) || ((sizeA == sizeB) && h1 && h2 && (*h1 > *h2))) {
h1 = baseA;
h2 = baseB;
sizeAB = sizeA;
subsize = sizeB;
} else {
neg = !neg;
h1 = baseB;
h2 = baseA;
sizeAB = sizeB;
subsize = sizeA;
}
copysize = sizeAB - subsize;
hd = baseAB;
carry = 0;
while (subsize--) {
sival.ivalue = BASE1 - ((FULL) *h1++) + ((FULL) *h2++) + carry;
*hd++ = (HALF)(BASE1 - sival.silow);
carry = sival.sihigh;
}
while (copysize--) {
sival.ivalue = (BASE1 - ((FULL) *h1++)) + carry;
*hd++ = (HALF)(BASE1 - sival.silow);
carry = sival.sihigh;
}
hd = &baseAB[sizeAB - 1];
while ((*hd == 0) && (sizeAB > 1)) {
hd--;
sizeAB--;
}
/*
* This completes the calculation of abs(A-B). For the next step
* calculate the absolute difference of D and C into a temporary
* location at position S of the result. Negate the sign if C is
* larger than D.
*/
if (sizeC == sizeD) {
len = sizeC;
h1 = &baseC[len - 1];
h2 = &baseD[len - 1];
while ((len > 1) && (*h1 == *h2)) {
len--;
h1--;
h2--;
}
}
if ((sizeC > sizeD) || ((sizeC == sizeD) && (*h1 > *h2))) {
neg = !neg;
h1 = baseC;
h2 = baseD;
sizeDC = sizeC;
subsize = sizeD;
} else {
h1 = baseD;
h2 = baseC;
sizeDC = sizeD;
subsize = sizeC;
}
copysize = sizeDC - subsize;
hd = baseDC;
carry = 0;
while (subsize--) {
sival.ivalue = BASE1 - ((FULL) *h1++) + ((FULL) *h2++) + carry;
*hd++ = (HALF)(BASE1 - sival.silow);
carry = sival.sihigh;
}
while (copysize--) {
sival.ivalue = (BASE1 - ((FULL) *h1++)) + carry;
*hd++ = (HALF)(BASE1 - sival.silow);
carry = sival.sihigh;
}
hd = &baseDC[sizeDC - 1];
while ((*hd == 0) && (sizeDC > 1)) {
hd--;
sizeDC--;
}
/*
* This completes the calculation of abs(D-C). Now multiply
* together abs(A-B) and abs(D-C) into a temporary location,
* which is preserved until the final steps.
*/
baseABDC = temp;
sizeABDC = domul(baseAB, sizeAB, baseDC, sizeDC, baseABDC);
/*
* Now calculate B*D and A*C into one of their two final locations.
* Make sure the high order digits of the products are zeroed since
* this initializes the final result. Be careful about this zeroing
* since the size of the high order words might be smaller than
* the shift size. Do B*D first since the multiplies use one more
* word than the size of the product. Also zero the final extra
* word in the result for possible carries to use.
*/
len = domul(baseB, sizeB, baseD, sizeD, baseBD);
hd = &baseBD[len];
len = shift * 2 - len;
while (len--)
*hd++ = 0;
len = domul(baseA, sizeA, baseC, sizeC, baseAC);
hd = &baseAC[len];
len = sizetotal - shift * 2 - len + 1;
while (len--)
*hd++ = 0;
/*
* Now add in A*C and B*D into themselves at the other shifted
* position that they need. This addition is tricky in order to
* make sure that the two additions cannot interfere with each other.
* Therefore we first add in the top half of B*D and the lower half
* of A*C. The sources and destinations of these two additions
* overlap, and so the same answer results from the two additions,
* thus only two pointers suffice for both additions. Keep the
* final carry from these additions for later use since we cannot
* afford to change the top half of A*C yet.
*/
h1 = baseBD + shift;
h2 = baseAC;
carryACBD = 0;
len = shift;
while (len--) {
sival.ivalue = ((FULL) *h1) + ((FULL) *h2) + carryACBD;
*h1++ = sival.silow;
*h2++ = sival.silow;
carryACBD = sival.sihigh;
}
/*
* Now add in the bottom half of B*D and the top half of A*C.
* These additions are straightforward, except that A*C should
* be done first because of possible carries from B*D, and the
* top half of A*C might not exist. Add in one of the carries
* from the previous addition while we are at it.
*/
h1 = baseAC + shift;
hd = baseAC;
carry = carryACBD;
len = sizetotal - 3 * shift;
while (len--) {
sival.ivalue = ((FULL) *h1++) + ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (carry) {
sival.ivalue = ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
h1 = baseBD;
hd = baseBD + shift;
carry = 0;
len = shift;
while (len--) {
sival.ivalue = ((FULL) *h1++) + ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (carry) {
sival.ivalue = ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
/*
* Now finally add in the other delayed carry from the
* above addition.
*/
hd = baseAC + shift;
while (carryACBD) {
sival.ivalue = ((FULL) *hd) + carryACBD;
*hd++ = sival.silow;
carryACBD = sival.sihigh;
}
/*
* Now finally add or subtract (A-B)*(D-C) into the final result at
* the correct position (S), according to whether it is positive or
* negative. When subtracting, the answer cannot go negative.
*/
h1 = baseABDC;
hd = ans + shift;
carry = 0;
len = sizeABDC;
if (neg) {
while (len--) {
sival.ivalue = BASE1 - ((FULL) *hd) +
((FULL) *h1++) + carry;
*hd++ = (HALF)(BASE1 - sival.silow);
carry = sival.sihigh;
}
while (carry) {
sival.ivalue = BASE1 - ((FULL) *hd) + carry;
*hd++ = (HALF)(BASE1 - sival.silow);
carry = sival.sihigh;
}
} else {
while (len--) {
sival.ivalue = ((FULL) *h1++) + ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (carry) {
sival.ivalue = ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
}
/*
* Finally determine the size of the final result and return that.
*/
len = sizetotal;
hd = &ans[len - 1];
while ((*hd == 0) && (len > 1)) {
hd--;
len--;
}
tempbuf = temp;
return len;
}
/*
* Square a number by using the following formula recursively:
* (A*S+B)^2 = (S^2+S)*A^2 + (S+1)*B^2 - S*(A-B)^2
* where S is a power of 2^16, and so multiplies by it are shifts,
* and A and B are the left and right HALFs of the number to square.
*/
void
zsquare(ZVALUE z, ZVALUE *res)
{
LEN len;
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
if (ziszero(z)) {
*res = _zero_;
return;
}
if (zisunit(z)) {
*res = _one_;
return;
}
/*
* Allocate a temporary array if necessary for the recursion to use.
* The array needs to be allocated large enough for all of the
* temporary results to fit in. This size is about 3 times the
* size of the original number, since each recursion level uses 3/2
* of the size of its given number, and whose size is 1/2 the size
* of the previous level. The sum of the infinite series is 3.
* Allocate some extra words for rounding up the sizes.
*/
len = 3 * z.len + 32;
tempbuf = zalloctemp(len);
res->sign = 0;
res->v = alloc((z.len+2) * 2);
/*
* Without the memset below, Purify reports that dosquare()
* will read uninitialized memory at the dosquare() line below
* the comment:
*
* uninitialized memory read (see zsquare)
*
* This problem occurs during regression test #622 and may
* be duplicated by executing:
*
* config("sq2", 2);
* 0xffff0000ffffffff00000000ffff0000000000000000ffff^2;
*/
memset((char *)res->v, 0, ((z.len+2) * 2)*sizeof(HALF));
res->len = dosquare(z.v, z.len, res->v);
}
/*
* Recursive routine to square a number by splitting it up into two numbers
* of half the size, and using the results of squaring the sub-pieces.
* The result is placed in the indicated array, which must be large
* enough for the result (size * 2). Returns the size of the result.
* This uses a temporary array which must be 3 times as large as the
* size of the number at the top level recursive call.
*
* given:
* vp value to be squared
* size length of value to square
* ans location for result
*/
S_FUNC LEN
dosquare(HALF *vp, LEN size, HALF *ans)
{
LEN shift; /* amount numbers are shifted by */
LEN sizeA; /* size of left half of number to square */
LEN sizeB; /* size of right half of number to square */
LEN sizeAA; /* size of square of left half */
LEN sizeBB; /* size of square of right half */
LEN sizeAABB; /* size of sum of squares of A and B */
LEN sizeAB; /* size of difference of A and B */
LEN sizeABAB; /* size of square of difference of A and B */
LEN subsize; /* size of difference of HALFs */
LEN copysize; /* size of number left to copy */
LEN sumsize; /* size of sum */
LEN sizetotal; /* total size of square */
LEN len; /* temporary length */
LEN len1; /* another temporary length */
FULL carry; /* carry digit for small multiplications */
FULL digit; /* single digit multiplying by */
HALF *temp; /* base for temporary calculations */
HALF *baseA; /* base of left half of number */
HALF *baseB; /* base of right half of number */
HALF *baseAA; /* base of square of left half of number */
HALF *baseBB; /* base of square of right half of number */
HALF *baseAABB; /* base of sum of squares of A and B */
HALF *baseAB; /* base of difference of A and B */
HALF *baseABAB; /* base of square of difference of A and B */
register HALF *hd, *h1, *h2, *h3; /* for inner loops */
SIUNION sival; /* for addition of digits */
/* firewall */
if (vp == NULL) {
math_error("%s: vp NULL", __func__);
not_reached();
}
if (ans == NULL) {
math_error("%s: ans NULL", __func__);
not_reached();
}
/*
* First trim the number of leading zeroes.
*/
hd = &vp[size - 1];
while ((*hd == 0) && (size > 1)) {
size--;
hd--;
}
sizetotal = size + size;
/*
* If the number has only a small number of digits, then use the
* (almost) normal multiplication method. Multiply each halfword
* only by those halfwords further on in the number. Missed terms
* will then be the same pairs of products repeated, and the squares
* of each halfword. The first case is handled by doubling the
* result. The second case is handled explicitly. The number of
* digits where the algorithm changes is settable from 2 to maxint.
*/
if (size < conf->sq2) {
hd = ans;
len = sizetotal;
while (len--)
*hd++ = 0;
h2 = vp;
hd = ans + 1;
for (len = size; len--; hd += 2) {
digit = (FULL) *h2++;
if (digit == 0)
continue;
h3 = h2;
h1 = hd;
carry = 0;
len1 = len;
while (len1 >= 4) { /* expand the loop some */
len1 -= 4;
sival.ivalue = (digit * ((FULL) *h3++))
+ ((FULL) *h1) + carry;
*h1++ = sival.silow;
sival.ivalue = (digit * ((FULL) *h3++))
+ ((FULL) *h1) + ((FULL) sival.sihigh);
*h1++ = sival.silow;
sival.ivalue = (digit * ((FULL) *h3++))
+ ((FULL) *h1) + ((FULL) sival.sihigh);
*h1++ = sival.silow;
sival.ivalue = (digit * ((FULL) *h3++))
+ ((FULL) *h1) + ((FULL) sival.sihigh);
*h1++ = sival.silow;
carry = sival.sihigh;
}
while (len1--) {
sival.ivalue = (digit * ((FULL) *h3++))
+ ((FULL) *h1) + carry;
*h1++ = sival.silow;
carry = sival.sihigh;
}
while (carry) {
sival.ivalue = ((FULL) *h1) + carry;
*h1++ = sival.silow;
carry = sival.sihigh;
}
}
/*
* Now double the result.
* There is no final carry to worry about because we
* handle all digits of the result which must fit.
*/
carry = 0;
hd = ans;
len = sizetotal;
while (len--) {
digit = ((FULL) *hd);
sival.ivalue = digit + digit + carry;
/* ignore Saber-C warning #112 - get ushort from uint */
/* OK to ignore on name dosquare`sival */
*hd++ = sival.silow;
carry = sival.sihigh;
}
/*
* Now add in the squares of each halfword.
*/
carry = 0;
hd = ans;
h3 = vp;
len = size;
while (len--) {
digit = ((FULL) *h3++);
sival.ivalue = digit * digit + ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
sival.ivalue = ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (carry) {
sival.ivalue = ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
/*
* Finally return the size of the result.
*/
len = sizetotal;
hd = &ans[len - 1];
while ((*hd == 0) && (len > 1)) {
len--;
hd--;
}
return len;
}
/*
* The number to be squared is large.
* Allocate temporary space and determine the sizes and
* positions of the values to be calculated.
*/
temp = tempbuf;
tempbuf += (3 * (size + 1) / 2);
sizeA = size / 2;
sizeB = size - sizeA;
shift = sizeB;
baseA = vp + sizeB;
baseB = vp;
baseAA = &ans[shift * 2];
baseBB = ans;
baseAABB = temp;
baseAB = temp;
baseABAB = &temp[shift];
/*
* Trim the second number of leading zeroes.
*/
hd = &baseB[sizeB - 1];
while ((*hd == 0) && (sizeB > 1)) {
sizeB--;
hd--;
}
/*
* Now to proceed to calculate the result using the formula.
* (A*S+B)^2 = (S^2+S)*A^2 + (S+1)*B^2 - S*(A-B)^2.
* The steps are done in the following order:
* S^2*A^2 + B^2
* A^2 + B^2
* (S^2+S)*A^2 + (S+1)*B^2
* (A-B)^2
* (S^2+S)*A^2 + (S+1)*B^2 - S*(A-B)^2.
*
* Begin by forming the squares of two the HALFs concatenated
* together in the final result location. Make sure that the
* highest words of the results are zero.
*/
sizeBB = dosquare(baseB, sizeB, baseBB);
hd = &baseBB[sizeBB];
len = shift * 2 - sizeBB;
while (len--)
*hd++ = 0;
sizeAA = dosquare(baseA, sizeA, baseAA);
hd = &baseAA[sizeAA];
len = sizetotal - shift * 2 - sizeAA;
while (len--)
*hd++ = 0;
/*
* Sum the two squares into a temporary location.
*/
if (sizeAA >= sizeBB) {
h1 = baseAA;
h2 = baseBB;
sizeAABB = sizeAA;
sumsize = sizeBB;
} else {
h1 = baseBB;
h2 = baseAA;
sizeAABB = sizeBB;
sumsize = sizeAA;
}
copysize = sizeAABB - sumsize;
hd = baseAABB;
carry = 0;
while (sumsize--) {
sival.ivalue = ((FULL) *h1++) + ((FULL) *h2++) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (copysize--) {
sival.ivalue = ((FULL) *h1++) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
if (carry) {
*hd = (HALF)carry;
sizeAABB++;
}
/*
* Add the sum back into the previously calculated squares
* shifted over to the proper location.
*/
h1 = baseAABB;
hd = ans + shift;
carry = 0;
len = sizeAABB;
while (len--) {
sival.ivalue = ((FULL) *hd) + ((FULL) *h1++) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
while (carry) {
/* uninitialized memory read (see zsquare) */
sival.ivalue = ((FULL) *hd) + carry;
*hd++ = sival.silow;
carry = sival.sihigh;
}
/*
* Calculate the absolute value of the difference of the two HALFs
* into a temporary location.
*/
if (sizeA == sizeB) {
len = sizeA;
h1 = &baseA[len - 1];
h2 = &baseB[len - 1];
while ((len > 1) && (*h1 == *h2)) {
len--;
h1--;
h2--;
}
}
if ((sizeA > sizeB) || ((sizeA == sizeB) && (*h1 > *h2))) {