-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.cpp
executable file
·48 lines (39 loc) · 1.7 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/* =========================================================================
Author: Leonardo Citraro
Company:
Filename: main.cpp
Last modifed: 09.01.2017 by Leonardo Citraro
Description: KDtree example
=========================================================================
=========================================================================
*/
#include "KDtree.hpp"
#include <iostream>
#include <array>
int main(int argc, char* argv[]) {
using TYPE = float;
std::array<std::array<TYPE,2>,8> data = {{{{1.1, 0.6}},{{0.4, 0.5}},{{0.2, 0.6}},{{0.5, 0.9}},
{{1.2, 0.3}},{{0.7, 0.4}},{{0.8, 1.0}},{{0.1, 0.2}}}};
KDtree<TYPE,8,2> kdtree(&data);
auto node = kdtree.get_node0();
std::cout << "Is root node? " << std::boolalpha << node->is_root() << "\n";
std::cout << "Split point(0)=\n" << node->get_split_point() << "\n";
node = node->go_left();
std::cout << "Split point(1a)=\n" << node->get_split_point() << "\n";
node = node->go_left();
std::cout << "Split point(2a)=\n" << node->get_split_point() << "\n";
node = node->go_back();
node = node->go_right();
std::cout << "Split point(2b)=\n" << node->get_split_point() << "\n";
// node_data is an Eigen::Map (view) of the original data
auto node_data = node->get_data_sliced();
std::cout << "The point nearest to (0.55,0.4) is: \n";
std::array<TYPE,2> sample = {0.55,0.4};
auto nearest_samples_idx = kdtree.find_k_nearest<Distance::euclidean>(1, sample);
for(auto& ns:nearest_samples_idx){
for(auto& v:data[ns])
std::cout << v << ",";
std::cout << "\n";
}
return 0;
}